Skip to main content
Log in

Comparison of wrist motion classification methods using surface electromyogram

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The Gaussian mixture model (GMM), k-nearest neighbor (k-NN), quadratic discriminant analysis (QDA), and linear discriminant analysis (LDA) were compared to classify wrist motions using surface electromyogram (EMG). Effect of feature selection in EMG signal processing was also verified by comparing classification accuracy of each feature, and the enhancement of classification accuracy by normalization was confirmed. EMG signals were acquired from two electrodes placed on the forearm of twenty eight healthy subjects and used for recognition of wrist motion. Features were extracted from the obtained EMG signals in the time domain and were applied to classification methods. The difference absolute mean value (DAMV), difference absolute standard deviation value (DASDV), mean absolute value (MAV), root mean square (RMS) were used for composing 16 double features which were combined of two channels. In the classification methods, the highest accuracy of classification showed in the GMM. The most effective combination of classification method and double feature was (MAV, DAMV) of GMM and its classification accuracy was 96.85%. The results of normalization were better than those of non-normalization in GMM, k-NN, and LDA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. YOU K J, SHIN H C. Classifying finger flexing motions with surface EMG using entropy and the maximum likelihood method [J]. The Institute of Electronics Engineers of Korea, 2009, 46(6): 38–43.

    Google Scholar 

  2. CASTELLINI C, SMAGT P. Surface EMG in advanced hand prosthetics [J]. Biological Cybernetics, 2009, 100(1): 35–47.

    Article  Google Scholar 

  3. JANG Y G, KWON J W, HAN Y H, JANG W S, HONG S H. A study of the pattern classification of the EMG signals using neural network and probabilistic model [J]. The Institute of Electronics Engineers of Korea, 1991, 28(10): 831–841.

    Google Scholar 

  4. AHMAD S A, CHAPPELL P H. Surface EMG pattern analysis of the wrist muscles at different speeds of contraction [J]. Journal of Medical Engineering & Technology, 2009, 33(5): 376–385.

    Article  Google Scholar 

  5. FARRY K A, WALKER I D, BARANIUK R. G. Myoelectric teleoperation of a complex robotic hand [J]. IEEE Transaction on Robotics and Automation, 1996, 12(5): 775–788.

    Article  Google Scholar 

  6. ENGLEHART K, HUDGINS B, CHAN A D C. Continuous multifunction myoelectric control using pattern recognition [J]. Technology and Disability, 2003, 15(2): 95–103.

    Google Scholar 

  7. PELEG D, BRAIMAN E, ELAD Y T, INBAR G F. Classification of finger activation for use in a robotic prosthesis arm [J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2002, 10(4): 290–293.

    Article  Google Scholar 

  8. CHAN A D C, ENGLEHART K B, Continuous classification of myoelectric signals for powered prostheses using Gaussian mixture models [C]// Proceedings of the 25th Annual International Conference of the IEEE EMBS. Cancun, 2003: 17–21.

    Google Scholar 

  9. BAKER J J, SCHEME E, ENGLEHART K. Continuous detection and decoding of dexterous finger flexions with implantable MyoElectric sensors [J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2010, 18(4): 424–432.

    Article  Google Scholar 

  10. CHAN F H Y, YANG Y S, LAM F K, ZHANG Y T, PARKER P A. Fuzzy EMG classification for prosthesis control [J]. IEEE Transactions on Rehabilitation Engineering, 2000, 8(3): 305–311.

    Article  Google Scholar 

  11. ALKAN A, GUNAY M. Identification of EMG signals using discriminant analysis and SVM classifier [J]. Expert Systems with Applications, 2012, 9(1): 44–47.

    Google Scholar 

  12. LEE S P, PARK S H. EMG pattern recognition based on evidence accumulation for prosthesis control [J]. Journal of Electrical Engineering and Information Science, 1977, 2(6): 20–27.

    Google Scholar 

  13. KIM K S, CHOI H H, MOON C S, MUN C W. Comparison of k-nearest neighbor, quadratic discriminant and linear discriminant analysis in classification of electromyogram signals based on the wrist-motion directions [J]. Current Applied Physics, 2011, 11(3): 740–745.

    Article  Google Scholar 

  14. PHINYOMARK A, PHUKPATTARANONT P, LIMSAKUL C. Feature reduction and selection for EMG signal classification [J]. Expert Systems with Application, 2012, 39(8): 7420–7431.

    Article  Google Scholar 

  15. FARFAN F D, POLITTI J C, FELICE C J. Evaluation of EMG processing techniques using information Theory [J]. BioMedical Engineering OnLine, 2010, 9: 72.

    Article  Google Scholar 

  16. de LUCA C J. Surface electromyography: Detection and recording [R]. Boston: DelSys Inc., 2002.

    Google Scholar 

  17. KHEZRI M, JAHED M. Real-time intelligent pattern recognition algorithm for surface EMG signals [J]. BioMedical Engineering OnLine, 2007, 6: 45.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang-min Lee.

Additional information

Foundation item: Project(NIPA-2012-H0401-12-1007) supported by the MKE(The Ministry of Knowledge Economy), Korea, supervised by the NIPA; Project(2010-0020163) supported by Key Research Institute Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology, Korea

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeong, Ec., Kim, Sj., Song, Yr. et al. Comparison of wrist motion classification methods using surface electromyogram. J. Cent. South Univ. 20, 960–968 (2013). https://doi.org/10.1007/s11771-013-1571-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-013-1571-2

Key words

Navigation