Skip to main content
Log in

Crystallization of calcium carbonate in hydrogels in presence of meso-tetrakis (4-hydroxylphenyl) porphyrin

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Organic matrices play an important role in biomineralization process. In order to explore the effect of both meso-tetrakis (4-hydroxylphenyl) porphyrin (THPP) and hydrogels on calcium carbonate mineralization, and consequently synthesize functional materials based on porphyrin and calcium carbonate with tunable shapes and optical properties, a new kind of biomimetic mineralization system which combined THPP with three biopolymer hydrogels (gelatin, agarose and calcium alginate gels) was designed and investigated. A carbonate diffusion method based on the generation of CO2 by slow decomposition of ammonium hydrogen carbonate was adopted for calcium carbonate crystallization. The results show that both gelatin and alginate hydrogels exhibit the ability of stabilizing vaterite, while agarose only induces the formation of calcite. With participation of THPP in the mineralization environments, calcite is favored in all these hydrogels, while the crystal morphologies are greatly different from each other. These results indicate the perspective of THPP in regulating calcium carbonate crystallization and also provide a new strategy for fabricating advanced functional materials with controlled morphology and tunable optical properties based on calcium carbonate and THPP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. CÖLFEN H, ANTONIETTI M. Crystal design of calcium carbonate microparticles using double-hydrophilic block copolymers [J]. Langmuir, 1998, 14: 582–589.

    Article  Google Scholar 

  2. YU Shu-hong, CÖLFEN H, TAUER K, ANTOIETTI M. Tectonic arrangement of BaCO3 nanocrystals into helices induced by a racemic block copolymer [J]. Nat Mater, 2005, 4: 51–55.

    Article  Google Scholar 

  3. NAKA K. Effect of dendrimers on the crystallization of calcium carbonate in aqueous solution [J]. Top Curr Chem, 2003, 228: 83–112.

    Google Scholar 

  4. HAN J T, XU X R, KIM D H, CHO K. Biomimetic fabrication of vaterite film from amorphous calcium carbonate on polymer melt: Effect of polymer chain mobility and functionality [J]. Chem Mater, 2005, 17: 136–141.

    Article  Google Scholar 

  5. MANOLIA F, KANAKISA J, MALKAJB P, DALAS E. The effect of aminoacids on the crystal growth of calcium carbonate [J]. J Cryst Growth, 2002, 236: 363–370.

    Article  Google Scholar 

  6. QIAO Li, FENG Qing-ling, LI Zhou, LU Shan-shan. Alternate deposition of oriented calcite and amino acid layer on calcite substrates [J]. J Phys Chem B, 2008, 112: 13635–13640.

    Article  Google Scholar 

  7. FALINI G, FERMANI S, GAZZANO M, RIPAMONTI A. Oriented crystallization of vaterite inside collagenous matrices [J]. Chem Eur J, 1998, 4: 1048–1952.

    Article  Google Scholar 

  8. SINDHU S, JEGADESAN S, HAIRONG L, AJIKUMAR P K, VETRICHELVAN M, VALIYAVEETTIL S. Synthesis and patterning of luminescent CaCO3-poly (p-phenylene) hybrid materials and thin films [J]. Adv Funct Mater, 2007, 17: 1698–1704.

    Article  Google Scholar 

  9. GRASSMANN O, MÜLLER G, LÖBMANN P. Organic-inorganic hybrid structure of calcite crystalline assemblies grown in a gelatin hydrogel matrix: relevance to biomineralization [J]. Chem Mater, 2002, 14: 4530–4535.

    Article  Google Scholar 

  10. YANG Dong, QI Li-min, MA Ji-ming. Well-defined star-shaped calcite crystals formed in agarose gels [J]. Chem Commun, 2003, 10: 1180–1181.

    Article  Google Scholar 

  11. LI Xin-ping, SHEN Qiang, SU Yun-lan, TIAN Fang, ZHAO Ying, WANG Du-jin. Structure-function relationship of calcium alginate hydrogels: A novel crystal-forming engineering [J]. Crys Growth Des, 2009, 9: 3470–3476.

    Article  Google Scholar 

  12. WEBSTER S, ODOM SA, PADILHA LA, PRZHONSKA OV, PECELI D, HU H, NOOTZ G, KACHKOVSKI AD, MATICHAK J, BARLOW S, ANDERSON HL, MARDER SR, HAGAN DJ, VAN SEW. Linear and nonlinear spectroscopy of a porphyrin-squaraine-porphyrin conjugated system [J]. J Phys Chem B, 2009, 113: 14854–14867.

    Article  Google Scholar 

  13. YAMAMURA T, SUZUKI S, TAGUCHI T, ONODA A, KAMACHI T, OKURA I. Porphyrin arrays responsive to additives: Fluorescence tuning [J]. J Am Chem Soc, 2009, 131: 11719–11726.

    Article  Google Scholar 

  14. GUO Xi-liang, AN Wen-ting, SHUANG Shao-min, CHENG Fang-qin, DONG Chuan. Study on spectroscopic characterization of meso-tetrakis (4-hydroxyphenyl) porphyrin (THPP) in β-cyclodextrin and its derivatives [J]. J Photoch Photobio A: Chem, 2005, 173: 258–263.

    Article  Google Scholar 

  15. ZHANG Feng-ju, CHENG Guo-xiang, GAO Zhi, LI Cui-ping. Preparation of porous calcium alginate membranes/microspheres via an emulsion templating method [J]. Macromol Mater Eng, 2006, 291: 485–492.

    Article  Google Scholar 

  16. KONTOYANNIS C G, VAGENAS N V. Calcium carbonate phase analysis using XRD and FT-Raman spectroscopy [J]. Analyst, 2000, 125: 251–255.

    Article  Google Scholar 

  17. BICA C I D, BORSALI R, GEISSLER E, ROCHAS C. Dynamics of cellulose whiskers in agarose gels. 1: Polarized dynamic light scattering [J]. Macromolecules, 2001, 34: 5275–5279.

    Article  Google Scholar 

  18. BUTLER M F, GLASER N, WEAVER A C, KIRKLAND M, HEPPENSTALL-BUTLER M. Calcium carbonate crystallization in the presence of biopolymers [J]. Crys Growth Des, 2006, 6: 781–794.

    Article  Google Scholar 

  19. BUTLER M F, FRITH W J, RAWLINS C, WEAVER A C, HEPPENSTALL-BUTLER M. Hollow calcium carbonate microsphere formation in the presence of biopolymers and additives [J]. Crys Growth Des, 2009, 9: 534–545.

    Article  Google Scholar 

  20. FRICKE M, VOLKMER D, E. KRILL III C, KELLERMANN M, HIRSCH A. Vaterite polymorph switching controlled by surface charge density of an amphiphilic dendron-calix[4]arene [J]. Crys Growth Des, 2006, 6: 1120–1123.

    Article  Google Scholar 

  21. LOSTE E, DÍAZ-MARTÍ E, ZARBAKHSH A, C. MELDRUM F. Study of calcium carbonate precipitation under a series of fatty acid Langmuir monolayers using brewster angle microscopy [J]. Langmuir, 2003, 19: 2830–2837.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin-guo Yang  (杨新国).

Additional information

Foundation item: Project supported by the Fundamental Research Funds for the Central Universities of China; Project (50573019) supported by the National Natural Science Foundation of China; Project (SKL2009-5) supported by Open Research Program of State Key Lab of Silicon Material, Zhejiang University, China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Fj., Yang, Xg., Zhuang, Y. et al. Crystallization of calcium carbonate in hydrogels in presence of meso-tetrakis (4-hydroxylphenyl) porphyrin. J. Cent. South Univ. 19, 1802–1807 (2012). https://doi.org/10.1007/s11771-012-1211-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-012-1211-2

Key words

Navigation