Skip to main content
Log in

Leaching kinetics of acid-soluble Cr(VI) from chromite ore processing residue with hydrofluoric acid

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Leaching kinetics of acid-soluble Cr(VI) in chromite ore processing residue (COPR) using hydrofluoric (HF) acid solution as a leaching agent was investigated for potential remediation of COPR with industrial waste water containing HF. The results show that HF can effectively destabilize the Cr(VI)-bearing minerals, resulting in the mobilization of Cr(VI) from COPR into the leachate. Particle size significantly influences the leaching of acid-soluble Cr(VI) from COPR, followed by leaching time, whereas the effects of HF concentration and leaching temperature are slight and the influence of stirring rate is negligible. The leaching process of acid-soluble Cr(VI) from COPR is controlled by the diffusion through the product layer. The apparent activation energy is 8.696 kJ/mol and the reaction orders with respect to HF concentration and particle size is 0.493 8 and −2.013 3, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. KOWALSKI Z, GOLLINGER-TARAJKO M. Environmental evaluation of different variants of the chromium compound production model using chromic waste [J]. Waste Management, 2003, 23(8): 771–783.

    Article  Google Scholar 

  2. DEAKIN D, WEST L J, STEWART D I, YARDLEYD B W. Leaching behavior of a chromium smelter waste heap [J]. Waste Management, 2001, 21(3): 265–270.

    Article  Google Scholar 

  3. JAGUPILLA S C, MOON D H, WAZNEA M, CHRISTODOULATOS C, KIM M G. Effects of particle size and acid addition on the remediation of chromite ore processing residue using ferrous sulfate [J]. Journal of Hazardous Materials, 2009, 168(1): 121–128.

    Article  Google Scholar 

  4. JI Zhu. Two key points for the treatment of chromium ore processing residue [J]. Inorganic Chemicals Industry, 2004, 36(5): 1–4. (in Chinese)

    Google Scholar 

  5. GEELHOED J S, MEEUSSEN J C L, HILLIER S, LUMSDON D G, THOMAS R P, FARMER J G, PATERSON E. Identification and geochemical modeling of processes controlling leaching of Cr(VI) and other major elements from chromite ore processing residue [J]. Geochimica et Cosmochimica Acta, 2002, 66(22): 3927–3942.

    Article  Google Scholar 

  6. HILLIER S, ROE M J, GEELHOED J S, FRASER A R, FARMER J G, PATERSON E. Role of quantitative mineralogical analysis in the investigation sites contaminated by chromite ore processing residue [J]. Science of the Total Environment, 2003, 308(1): 195–210.

    Article  Google Scholar 

  7. HILLIER S, LUMSDON D G, BRYDSON R, PATERSON E. Hydrogarnet: A host phase for Cr(VI) in chromite ore processing residue (COPR) and other high pH wastes [J]. Environmental Science and Technology, 2007, 41(6): 1921–1927.

    Article  Google Scholar 

  8. TERRY P A. Characterization of Cr ion exchange with hydrotalcite [J]. Chemosphere, 2004, 57(7): 541–546.

    Article  Google Scholar 

  9. FARMER J. PATERSON E, BEWLEY R J F, GEELHOED J S, HILLIER S, MEEUSSEN J C, LUMSDON D G, THOAMS R P, GRAHAM M C. The implications of integrated assessment and modeling studies for the future remediation of chromite ore processing residue disposal sites [J]. Science of the Total Environment, 2006, 360(1): 90–97.

    Article  Google Scholar 

  10. TINJUM J M, BENSON C H, EDIL T B. Mobilization of Cr(VI) from chromite ore processing residue through acid treatment [J]. Science of the Total Environment, 2008, 391(1): 13–25.

    Article  Google Scholar 

  11. DERMATAS D, CHRYSOCHOOU M, MOON D H, GRUBB D G, WAZNE M, CHRISTODOULATOS C. Ettringite-induced heave in chromite ore processing residue (COPR) upon ferrous sulfate treatment [J]. Environmental Science and Technology, 2006, 40(18): 5786–5792.

    Article  Google Scholar 

  12. MOON D H, DERMATAS D, WAZNE M, SANCHEZ A M, CHRYSOCHOOU M, GRUBB D G. Swelling related to ettringite crystal formation in chromite ore processing residue [J]. Environmental Geochemistry and Health, 2007, 29(4): 289–294.

    Article  Google Scholar 

  13. MOON D H, WAZNE M, DERMATAS D, CHRISTODULATOS C, SANCHEZ A M, GRUBB D G, CHRYSOCHOOU M, KIM M G. Long-term treatment issues with chromite ore processing residue (COPR): Cr6+ reduction and heave [J]. Journal of Hazardous Materials, 2007, 143(3): 629–635.

    Article  Google Scholar 

  14. MOON D H, WAZNE M, JAGUPILLA S C, CHRISTODOULATOS C, KIM M G, KOUTSOSPYROS A. Particle size and pH effects on remediation of chromite ore processing residue using calcium polysulfide (CaS5) [J]. Science of the Total Environment, 2008, 399(1/2/3): 2–10.

    Article  Google Scholar 

  15. WAZNE M, JAGUPILLA S C, MOON D H, CHRISTODOULATOS C, KIM M G. Assessment of calcium polysulfide for the remediation of hexavalent chromium in chromite ore processing residue (COPR) [J]. Journal of Hazardous Materials, 2007, 143(3): 620–628.

    Article  Google Scholar 

  16. WAZNE M, MOON D H, JAGUPILLA S C, CHRISTODOULATOS C, DERMATAS D, CHRYSOCHOOU M. Remediation of chromite ore processing residue using ferrous sulfate and calcium polysulfide [J]. Geoscience Journal, 2007, 11(2): 105–110.

    Article  Google Scholar 

  17. HATZIFOTIS M, WILLIAMS A, MULLER M, PEGG S. Hydrofluoric acid burns [J]. Burns, 2004, 30(2): 156–159.

    Article  Google Scholar 

  18. SPÖLER F, FRENTZ M, FÖRST M, KURZ H, SCHRAGE N F. Analysis of hydrofluoric acid penetration and decontamination of the eye by means of time-resolved optical coherence tomography [J]. Burns, 2008, 34(4): 549–555.

    Article  Google Scholar 

  19. PAN Jin-fang, FENG Xiao-xi, ZHANG Da-nian. Study the forms of chromium of chromite ore processing residue [J]. Shanghai Environmental Science, 1996, 15(3): 15–17. (in Chinese)

    Google Scholar 

  20. CHI Ru-an, TIAN Jun, GAO Hong, ZHOU Fang, LIU Min, WANG Chun-wen. Kinetics of leaching flavonoids from pueraria lobatu with ethanol [J]. Chinese Journal of Chemical Engineering, 2006, 14(3): 402–406.

    Article  Google Scholar 

  21. FENG Qi-ming, SHAO Yan-hai, OU Le-ming, ZHANG Guo-fan, LU Yi-ping. Kinetics of nickel leaching from roasting-dissolving residue of spent catalyst with sulfuric acid [J]. Journal of Central South University of Technology, 2009, 16(3): 410–415.

    Article  Google Scholar 

  22. SUN Hui-lan, YU Hai-yan, WANG Bo, MIAO Yu, TU Gan-feng, BI Shi-wen. Leaching dynamics of 12CaO·7Al2O3 [J]. The Chinese Journal of Nonferrous Metals, 2008, 18(10): 1920–1925. (in Chinese)

    Google Scholar 

  23. LI Hao-ran, FENG Ya-li, LUO Xiao-bin, WANG Hong-jie, DU Zhu-wei. Leaching kinetics of extraction of vanadium pentoxide from clay mineral [J]. Journal of Central South University: Science and Technology, 2008, 39(6): 1181–1184. (in Chinese)

    Google Scholar 

  24. ABDEL-AAL E A. Kinetics of sulfuric acid leaching of low grade zinc silicate ore [J]. Hydrometallurgy, 2000, 55(3): 247–254.

    Article  Google Scholar 

  25. LOZANO L J, JUAN D. Leaching of vanadium from spent sulfuric acid catalysts [J]. Minerals Engineering, 2001, 14(5): 543–546.

    Article  Google Scholar 

  26. FAN Xing-xiang, PENG Jin-hui, HUANG Meng-yang, ZHANG Shi-min, ZHANG Li-bo, GUO Sheng-hui, YANG Kun-bin. Study on kinetics of oxidative leaching of chalcopyrite in the presence of silver ion [J]. Precious Metals, 2005, 26(3): 15–20. (in Chinese)

    Google Scholar 

  27. MOHAMMAD S S, DAVOOD M, MEHDI O I. Kinetics of sulfuric acid leaching of cadmium from Cd-Ni zinc plant residues [J]. Journal of Hazardous Materials, 2009, 163(2): 880–890.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiu-sheng Zhou  (周秋生).

Additional information

Foundation item: Project(2009FJ1009) supported by Major Program of Hunan Provincial Science and Technology, China; Project(2005CB6237) supported by the National Basic Research Program of China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Xb., Xu, Wb., Zhou, Qs. et al. Leaching kinetics of acid-soluble Cr(VI) from chromite ore processing residue with hydrofluoric acid. J. Cent. South Univ. Technol. 18, 399–405 (2011). https://doi.org/10.1007/s11771-011-0710-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-011-0710-x

Key words

Navigation