Skip to main content
Log in

Synthesis and electrochemical properties of SnO2-polyaniline composite

  • Published:
Journal of Central South University of Technology Aims and scope Submit manuscript

Abstract

The SnO2-polyaniline(SnO2-PAn) composite was prepared by microemulsion polymerization method using aniline, ammonium peroxodisulfate and SnO2 as starting materials. The SnO2-PAn composite was characterized by X-ray diffractometer, scanning electron microscope and electrochemical techniques. The results show that PAn in the composites is amorphous. PAn formed in the reaction is deposited preferentially on the SnO2 particles, giving a SnO2-PAn composite, in which SnO2 is coated with PAn. SnO2-PAn composite shows a reversible capacity of 657.6 mA·h/g and the capacity loss per cycle is only 0.092% after 80 cycles, suggesting that SnO2-PAn composite is a promising anode material for lithium ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. IDOTA Y, MATSUFUJI A, MAEKAWA Y, NIYASAKA T. Tin-based amorphous oxide: A high-capacity lithium-ion-storage material[J]. Science, 1997, 276(5317): 1395–1397.

    Article  Google Scholar 

  2. COURTNEY A, DAHN J R. Electrochemical and in situ X-ray diffraction studies of the reaction of lithium with tin oxide composites[J]. J Electrochem Soc, 1997, 144(6): 2045–2052.

    Article  Google Scholar 

  3. COURTNEY A, DAHN J R. Key factors controlling the reversibility of the reaction of lithium with SnO2 and Sn2BPO6 glass[J]. J Electrochem Soc, 1997, 144(9): 2943–2948.

    Article  Google Scholar 

  4. HE Ze-qiang, LI Xin-hai, XIONG Li-zhi, WU Xian-ming, XIAO Zhuo-bing, MA Ming-you. Synthesis and electrochemical properties of tin oxide-based composite by rheological technique[J]. Materials Chemistry & Physics, 2005, 93(2/3): 516–520.

    Article  Google Scholar 

  5. HE Ze-qiang, XIONG Li-zhi, XIAO Zhuo-bing, MA Ming-you, WU Xian-ming. Preparation and electrochemical properties of nano-SnO by sol-gel technique[J]. Chinese Journal of Inorganic Chemistry, 2006, 22(2): 253–257. (in Chinese)

    Google Scholar 

  6. YANG J, WINTER M, BESENHARD J O. Small particle size multiphase Li-alloy anodes for lithium-ion-batteries[J]. Solid State Ionics, 1996, 90(4): 281–287.

    Article  Google Scholar 

  7. BESENHARD J O, YANG J, WINTER M. Will advanced lithiumalloy anodes have a chance in lithium-ion batteries?[J]. J Power Sources, 1997, 68(1): 87–90.

    Article  Google Scholar 

  8. WINTER M, BESENHARD J O, SPAHR M E, NOVAK P. Insertion electrode materials for rechargeable lithium batteries[J]. Adv Mater, 1998, 10(10): 725–763.

    Article  Google Scholar 

  9. LEE J Y, ZHANG R, LIU Z. Lithium intercalation and deintercalation reactions in synthetic graphite containing a high dispersion of SnO [J]. Electrochem Solid State Lett, 2000, 3(4): 167–170.

    Article  Google Scholar 

  10. READ J, FOSTER D, WOLFENSTINE J, BEHL W. SnO2-carbon composites for lithium-ion battery anodes[J]. J Power Sources, 2001, 96(2): 277–281.

    Article  Google Scholar 

  11. MA Ming-you, HE Ze-qiang, XIONG Li-zhi, LI Xin-hai, XIAO Zhuo-bing, WU Xian-bing, LIU Wen-ping. Preparation and electrochemical properties of SnO2-graphite composites by homogeneous precipitation technique[J]. The Chinese Journal of Nonferrous Metals, 2005, 15(5): 793–798. (in Chinese)

    Google Scholar 

  12. QI Zhi, WU Feng. Nanosized SnO2/graphite composite as negative electrode materials for lithium ion batteries [J]. Chinese Journal of Inorganic Chemistry, 2005, 21(2): 257–260. (in Chinese)

    MathSciNet  Google Scholar 

  13. BALAN L, SCHNEIDER R, WILLMANN P, BIUAUD D. Tin-graphite materials prepared by reduction of SnCl4 in organic medium: Synthesis, characterization and electrochemical lithiation[J]. J Power Sources, 2006, 161(1): 587–593.

    Article  Google Scholar 

  14. GUO Z P, WANG J Z, LIU H K, DOU S X. Study of silicon/ polypyrrole composite as anode materials for Li-ion batteries[J]. J Power Sources, 2005, 146(1/2): 448–451.

    Article  Google Scholar 

  15. PASQUIER A, ORSINI F, GOZDZ A S, TARASCON J M. Electrochemical behaviour of LiMn2O4-PPy composite cathodes in the 4-V region[J]. J Power Sources, 1999, 81/82(4): 607–611.

    Article  Google Scholar 

  16. VEERARAGHAVAN B, PAUL J, HALA B, POPOV B. Study of polypyrrole graphite composite as anode material for secondary lithium-ion batteries[J]. J Power Sources, 2002, 109(2): 377–387.

    Article  Google Scholar 

  17. ZHANG Xiang-wu. WANG Chun-sheng, APPLEBY A J, LITTL F E. Improvement in electrochemical properties of nano-tin-polyaniline lithium-ion composite anodes by control of electrode microstructure[J]. J Power Sources, 2003, 109(1): 136–141.

    Article  Google Scholar 

  18. SCHNITZLER D C, MERUVIA M S, HUMMELGEN I A, ZARBIN A J G. Preparation and characterization of novel hybrid materials formed from (Ti, Sn)O2 nanoparticles and polyaniline[J]. Chem Mater, 2003, 15(24): 4658–4665.

    Article  Google Scholar 

  19. HE Ze-qiang, XIONG Li-zhi, MA Ming-you, XIAO Zhuo-bing, WU Xian-ming. Synthesis and characterization of nanometer SnO2 by non-hydrolytic sol-gel approach [J]. Chinese Journal of Inorganic Chemistry, 2005, 21(11): 1691–1696. (in Chinese)

    Google Scholar 

  20. SHENG Yu, CHEN Jian-ding, ZHU De-qin. In-situ chemical synthesis and characterization of conducting polyaniline/manganese dioxide composites[J]. Acta Materiae Compositae Sinica, 2004, 21(4): 1–7. (in Chinese)

    Google Scholar 

  21. FU L J, LIU H, ZHANG H P, LI C, ZHANG T, WU Y P, HOLZE R, WU H Q. Synthesis and electrochemical performance of novel core/shell structured nanocomposites[J]. Electrochemistry Communications, 2006, 8(1): 1–4.

    Article  Google Scholar 

  22. HE Ze-qiang, LI Xin-hai, WU Xian-ming, HOU Zhao-hui, LIU En-hui, DENG Ling-feng, HU Chuang-yue, TIAN Hui-peng. Preparation and electrochemical properties of nanosized tin dioxide electrode material by sol-gel process[J]. Trans Nonferrous Met Soc China, 2003, 13(4): 998–1002.

    Google Scholar 

  23. HE Ze-qiang, LI Xin-hai, XIONG Li-zhi, LIU En-hui, HOU Zhao-hui, WU Xian-ming, DENG Ling-feng. Soft chemical synthesis and electrochemical properties of tin oxide-based materials as anodes for lithium ion batteries[J]. J Cent South Univ Technol, 2004, 11(2): 142–146.

    Article  Google Scholar 

  24. HE Ze-qiang, XIONG Li-zhi, XIAO Zhuo-bing, MA Ming-you, WU Xian-ming. Electrochemical properties of novel calcium stannate anode for lithium ion batteries[J]. Trans Nonferrous Met Soc China, 2005, 15(6): 1420–1424.

    Google Scholar 

  25. MACDONALD J R. Impedance spectroscopy[M]. New York: John Wiley & Sons, 1987: 69.

    Google Scholar 

  26. AURBACH D, EIN-ELI Y, CHUSID O, CARMELI Y, BABAI M, YAMIN H. The correlation between the surface chemistry and the performance of Li-carbon intercalation anodes for rechargeable ‘Rocking-Chair’ type batteries[J]. J Electrochem Soc, 1994, 141(3): 603–610.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ze-qiang He  (何则强).

Additional information

Foundation item: Project(20376086) supported by the National Natural Science Foundation of China; Project(2005037700) supported by the Postdoctoral Science Foundation of China; Project(07A058) supported by the Scientific Research Fund of Hunan Provincial Education Department; Project(07JJ3014) supported by Hunan Provincial Natural Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, Zq., Xiong, Lz., Liu, Wp. et al. Synthesis and electrochemical properties of SnO2-polyaniline composite. J. Cent. South Univ. Technol. 15, 214–217 (2008). https://doi.org/10.1007/s11771-008-0041-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-008-0041-8

Key words

Navigation