Skip to main content
Log in

Interfacial interaction of bio-leaching of pyrite mineral

  • Published:
Journal of Central South University of Technology Aims and scope Submit manuscript

Abstract

Electrokinetic and contact angle measurements were used to discuss the interfacial interaction on bio-leaching of pyrite mineral. Surface energy parameters of pyrite mineral and thiobacillus ferrooxidans were obtained by calculating according to formula of Young’s equation and contact angle measurements. The results show that surface energy of thiobacillus ferrooxidans is much higher than that of pyrite mineral, and the reaction of pyrite mineral with thiobacillus ferrooxidans causes the reduction of the pyrite surface energy. The interfacial interaction energies between pyrite mineral and thiobacillus ferrooxidans were also obtained based on polar interfacial interaction theory and electrokinetic and contact angle measurements. The thermodynamics approach only considering Lifshitz-van der Waals and Lewis acid-base interaction fails to explain the adhesion behavior of the bacteria, but the extended Derjaguin-Landan-Verwey-Overbeek theory concerning Lifshitz-van der Waals and Lewis acid-base and the electrostatic can exactly predict interfacial interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. SILVERMAN M P, EHRLICH H L. Microbial formation and degradation of metals[J]. Adv Appl Microbiol, 1964, 6: 153–206.

    Article  Google Scholar 

  2. TRIBUTSCH H, ROJAS-CHAPANA J A. Metal sulfide semiconductor electrochemical mechanisms induced by bacterial activity[J]. Electrochimica Acta, 2000, 45(28): 4705–4716.

    Article  Google Scholar 

  3. TRIBUTSCH H. Direct versus indirect bioleaching[J]. Hydrometallurgy, 2001, 59: 177–185.

    Article  Google Scholar 

  4. JANCZUK B, BRUQUE J M, GONZÁLEZ-MARTÍN M L, ROMÁN-GALÁN E. The contribution of double layers to the free energy of interactions in the cassiterite-SDS solution system[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1995, 100: 93–103.

    Article  Google Scholar 

  5. SHARMA P K, HANUMANTHA-RAO K. Adhesion of Paenibacillus polymyxa on chalcopyrite and pyrite: Surface thermodynamics and extended DLVO theory[J]. Colloids and Surfaces B: Biointerfaces, 2003, 29(1): 21–38.

    Article  Google Scholar 

  6. HERMANSSON M. The DLVO theory in microbial adhesion[J]. Colloids and Surfaces B: Biointerfaces, 1999, 14(1/4): 105–119.

    Article  Google Scholar 

  7. SHALEL-LEVANON S, MARMUR A. Validity and accuracy in evaluating surface tension of solids by additive approaches[J]. Journal of Colloid and Interface Science, 2003, 262(2): 489–499.

    Article  Google Scholar 

  8. JANCZUK B, GONZÁLEZ-MARTÍN M L, BRUQUE J M. The influence of sodium dodecyl sulfate on the surface free energy of cassiterite[J]. Journal of Colloid and Interface Science, 1995, 170(2): 383–391.

    Article  Google Scholar 

  9. van OSS C J, CHAUDHURY M K, GOOD R J. Mechanism of partition in aqueous media[J]. Separation Science and Technology, 1987, 22(6): 1515–1526.

    Article  Google Scholar 

  10. van OSS C J, GOOD R J, CHAUDHURY M K. Estimation of the polar surface tension parameters of glycerol and formamide, for use in contact angle measurements on polar solids[J]. Journal of Dispersion Science and Technology, 1990, 11(1): 75–81.

    Article  Google Scholar 

  11. LEÓN V, TUSA A, ARAUJO Y C. Determination of the solid surface tensions: I. The platinum case[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 155(2/3): 131–136.

    Article  Google Scholar 

  12. ADÃO M H V C, SARAMAGO B J V, FERNANDES A C. Estimation of the surface properties of styrene-acrylonitrile random copolymers from contact angle measurements[J]. Journal of Colloid and Interface Science, 1999, 217(1): 94–106.

    Article  Google Scholar 

  13. PARK S J, KIM J S. Influence of plasma treatment on microstructures and acid-base surface energetics of nanostructured carbon blacks: N2 plasma environment[J]. Journal of Colloid and Interface Science, 2001, 244(2): 336–341.

    Article  Google Scholar 

  14. ESPINOSA-JIMÉNEZ M, ONTIVEROS-ORTEGA A, GIMÉNEZ-MARTÍN E. Surface energetics of the adsorption process of a cationic dye on leacril fabrics[J]. Journal of Colloid and Interface Science, 1997, 194(2): 419–426.

    Article  Google Scholar 

  15. ESPINOSA-JIMÉNEZ M, GIMÉNEZ-MARTÍN E, ONTIVEROS-ORTEGA A. Effect of tannic acid on the ζ potential, sorption, and surface free energy in the process of dyeing of leacril with a cationic dye[J]. Journal of Colloid and Interface Science, 1998, 207(1): 170–179.

    Article  Google Scholar 

  16. WU W, GIESE R F, van OSS C J. Stability versus flocculation of particle suspensions in water—correlation with the extended DLVO approach for aqueous systems, compared with classical DLVO theory[J]. Colloids and Surfaces B: Biointerfaces, 1999, 14(1/4): 47–55.

    Article  Google Scholar 

  17. YANG C, DABROS T, LI D Q, CZARNECKI J, MASLIYAH J H. Analysis of fine bubble attachment onto a solid surface within the framework of classical DLVO theory[J]. Journal of Colloid and Interface Science, 1999, 219(1): 69–80.

    Article  Google Scholar 

  18. POORTINGA A T, BOS R, NORDE W, BUSSCHER H J. Electric double layer interactions in bacterial adhesion to surfaces[J]. Surface Science Reports, 2002, 47(5): 1–32.

    Article  Google Scholar 

  19. OLIVEIRA R. Understanding adhesion: A means for preventing fouling[J]. Thermo Fluid Sci, 1997, 14(4): 316–322.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gu Guo-hua  (顾帼华).

Additional information

Foundation item: Project(2004CB619204) supported by the National Basic Research Program of China; Project(2002) supported by the Teaching and Research Award Program for Outstanding Young Teachers in Higher Education Institutions, China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gu, Gh., Wang, H., Suo, J. et al. Interfacial interaction of bio-leaching of pyrite mineral. J. Cent. South Univ. Technol. 15, 49–53 (2008). https://doi.org/10.1007/s11771-008-0011-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-008-0011-1

Key words

Navigation