Skip to main content
Log in

2.5D forward modeling and inversion of frequency-domain airborne electromagnetic data

  • Published:
Applied Geophysics Aims and scope Submit manuscript

Abstract

Frequency-domain airborne electromagnetics is a proven geophysical exploration method. Presently, the interpretation is mainly based on resistivity—depth imaging and one-dimensional layered inversion; nevertheless, it is difficult to obtain satisfactory results for two- or three-dimensional complex earth structures using 1D methods. 3D forward modeling and inversion can be used but are hampered by computational limitations because of the large number of data. Thus, we developed a 2.5D frequency-domain airborne electromagnetic forward modeling and inversion algorithm. To eliminate the source singularities in the numerical simulations, we split the fields into primary and secondary fields. The primary fields are calculated using homogeneous or layered models with analytical solutions, and the secondary (scattered) fields are solved by the finite-element method. The linear system of equations is solved by using the large-scale sparse matrix parallel direct solver, which greatly improves the computational efficiency. The inversion algorithm was based on damping least-squares and singular value decomposition and combined the pseudo forward modeling and reciprocity principle to compute the Jacobian matrix. Synthetic and field data were used to test the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Auken, E., Chistiansen, A. V., Jacobsen, B. H., et al., 2005, Piece-wise 1D laterally constrained inversion of resistivity data: Geophysical Prospecting, 53, 497–506.

    Article  Google Scholar 

  • Brodie, R., and Sambridge, M., 2006, A holistic approach to inversion of frequency-domain airborne EM data: Geophysics, 71(6), G301–G312.

    Article  Google Scholar 

  • Brodie, R., and Sambridge, M., 2009, Holistic inversion of frequency-domain airborne electromagnetic data with minimal prior information: Exploration Geophysics, 40, 8–16.

    Article  Google Scholar 

  • Cai, J., Qi, Y. F., Yin, C. C., et al., 2014, Weighted Laterally-constrained inversion of frequency-domain airborne EM data: Chinese Journal of Geophysics, 57(1), 953–960.

    Google Scholar 

  • Chen, J., and Raiche, A., 1998, Inverting AEM data using a damped eigenparameter method: Exploration Geophysics, 29, 128–132.

    Article  Google Scholar 

  • Cox, L. H., Wilson, G. A., and Zhdanov, M. S., 2010, 3D inversion of airborne electromagnetic data using a moving footprint: Exploration Geophysics, 41, 250–259.

    Article  Google Scholar 

  • Ellis, R. G., 1988, Inversion of airborne electromagnetic data: Exploration Geophysics, 29, 121–127.

    Article  Google Scholar 

  • Farquharson, C. G., Oldenburg, D. W., and Routh, P. S., 2003, Simultaneous 1-D inversion susceptibility and electrical conductivity: Geophysics, 68(6), 1857–1869.

    Article  Google Scholar 

  • Huang, H. P., and Fraser, D. C., 1996, The differential parameter method for multifrequency airborne resistivity mapping: Geophysics, 61(1), 100–109.

    Article  Google Scholar 

  • Huang, H. P., and Fraser, D. C., 2002, Dielectric permittivity and resistivity mapping using high frequency helicopter-borne EM data: Geophysics, 67(3), 727–738.

    Article  Google Scholar 

  • Huang, H. P., and Fraser, D. C., 2003, Inversion of helicopter electromagnetic data to a magnetic conductive layered earth: Geophysics, 68(4), 1211–1223.

    Article  Google Scholar 

  • Hu, X. Y., Peng R. H., Wu, G. J., et al., 2013, Mineral Exploration using CSAMT data: Application to Longmen region metallogenic belt, Guangdong Province, China: Geophysics, 78(3), B111–B119.

    Article  Google Scholar 

  • Leppin, M., 1992, Electromagnetic modeling of 3-D source over 2D inhomogeneities in the time domain: Geophysics, 57(8), 994–1003.

    Article  Google Scholar 

  • Li, X. K., 2011, A MPI Based Parallel Calculation Investigation on Two Dimensional Finite Element Modelling of AEM: PhD Thesis, China University of Geosciences, Beijing.

    Google Scholar 

  • Li, W. J., 2008, Data Processing of Frequency Domain Airborne Electromagnetic Survey: PhD Thesis, China University of Geosciences, Beijing.

    Google Scholar 

  • Liu, G. M., and Becker, A., 1992, Evaluation of terrain effects in AEM survey suing the boundary element method: Geophysics, 57(2), 272–278.

    Article  Google Scholar 

  • Liu, Y. H., and Yin, C. C., 2013, 3D inversion for frequency-domain HEM data: Chinese Journal of Geophysics, 56(12), 4278–4287.

    Google Scholar 

  • Lugão, P. P., and Wannamaker, P. E., 1996, Calculating the two-dimensional magnetotelluric Jacobian in finite elements using reciprocity: Geophys. J. Int., 127, 806–810.

    Article  Google Scholar 

  • McGillivaray, P. R., Oldenburg, D. W., Ellis R. G., et al., 1994, Calculation of sensitivity for the frequency-domain electromagnetic problem: Geophys. J. Int., 116, 1–4.

    Article  Google Scholar 

  • Nabighian, M. N., 1991, Electromagnetic theory for geophysical applications Electromagnetic Methods in Applied Geophysical: Vol.1, Theory, Geological Publishing House, 164–165.

    Google Scholar 

  • Newman, G. A., and Alumbaugh, D. L., 1995, Frequency domain modeling of airborne electromagnetic responses using staggered finite differences: Geophysical Prospecting, 43, 1021–1042.

    Article  Google Scholar 

  • Oldenburg, D. W., Haber, E., and Shekhtman R., 2013, Three Dimensional inversion of multisource time domain electromagnetic data: Geophysics, 78(1), 47–57.

    Article  Google Scholar 

  • Raiche, A., Annetts, D., and Sugeng, F., 2001, EM target response in complex hosts: Presented at ASEG 15th Geophysical Conference and Exhibition, Brisbane.

    Google Scholar 

  • Sengpiel, K. P., 1988, Approximate inversion of airborne EM data from a multilayered ground: Geophysical Prospecting, 36(4), 446–459.

    Article  Google Scholar 

  • Streich, R., 2009, 3D finite-difference frequency-domain modeling of controlled-source electromagnetic data: Direct solution and optimization for high accuracy. Geophysics 74, F95–F105.

    Article  Google Scholar 

  • Tan, L., 2010, 2.5D numerical simulation software developing of Frequency domain AEM: MSc Thesis, China University of Geosciences, Beijing.

    Google Scholar 

  • Tartaras, E., and Beamish, D., 2005, Laterally-constrained inversion of fixed-wing frequency-domain AEM data: Presented at 12th European Meeting of Environmental and Near Surface Geophysics, Helsinki.

    Google Scholar 

  • Unsworth, M. J., Travis, B. J., and Chave, A. D., 1993, Electromagnetic induction by a finite electric dipole source over a 2-D earth: Geophysics, 58, 198–214.

    Article  Google Scholar 

  • Vallée, M. A., and Smith, R. S., 2009, Inversion of airborne time-domain electromagnetic data to a 1D structure using lateral constraints: Near Surface Geophysics, 7, 63–71.

    Article  Google Scholar 

  • Viezzoli, A., Auken, E., and Munday T., 2009, Spatially constrained inversion for quasi 3D modeling of airborne electromagnetic data-an application for environmental in the Lower Murray Region of South Australia: Exploration Geophysics, 40, 173–183.

    Article  Google Scholar 

  • Wang, W. P., Fang, Y. Y., and Zheng G. R, 2007, The exploration efficiency of the helicopter electromagnetic system in Longmen, Guangdong province: Geophysical & Geochemical exploration, 31(6), 546–550.

    Google Scholar 

  • Wang, Y. H., 2013, The Research on HTEM 2.5D Forward Modeling and Curve Analysis: MSc Thesis, Chendu University of Technology.

    Google Scholar 

  • Ward, S. H., and Hohmann, G. W., 1988, Electromagnetic theory for geophysical applications Electromagnetic Methods in Applied Geophysical: Vol.1, Theory, in Nabighian, M. N., Ed., Society of exploration geophysics, 131–311.

    Google Scholar 

  • Wilson, G. A., Raiche, A. P., and Sugeng F., 2006, 2.5D inversion of airborne electromagnetic data: Exploration Geophysics, 37, 363–371.

    Article  Google Scholar 

  • Yin, C. C., and Hodgres, G., 2007, Simulated annealing for airborne EM inversion; Geophysics, 72(4), F189–F196.

    Article  Google Scholar 

  • Yin, C. C., Ren, X. Y., Liu, Y. H., et al., 2015a, Review on airborne electromagnetic inversion theory and applications, Geophysics, 80(4), W17–W31.

    Article  Google Scholar 

  • Yin, C. C., Zhang, B., Liu, Y. H., et al., 2015b, 2.5-D forward modeling of the time-domain airborne EM system in areas with topographic relief: Chinese J. Geophys. (in Chinese), 58(4), 1411–1424.

    Google Scholar 

  • Yin, H. J., 2012, 2.5D forward of time-domain of airborne electromagnetic: MSc Thesis, China University of Geosciences, Beijing.

    Google Scholar 

  • Yi, M. J., and Sasaki, Y., 2015, 2-D and 3-D joint inversion of loop-loop electromagnetic and electrical data for resistivity and magnetic susceptibility: Geophys. J. Int., 203, 1085–1095.

    Article  Google Scholar 

  • Zhou, D. Q., Tan, L., Tan, H. D., et al., 2010, Inversion of frequency domain helicopter-borne electromagnetic data with Marquardt’s method: Chinese Journal of Geophysics, 56(2), 421–427.

    Google Scholar 

  • Zhou, J. J., 2011, Research on Airborne Transient Electromagnetic 2.5D Forward Modeling: MSc Thesis, Central South University.

    Google Scholar 

  • Zienkiewicz, O. C., 1977, The Finite Element Method, third edition: McGraw–Hill.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhao-Fa Zeng.

Additional information

This work was supported by the Doctoral Fund Project of the Ministry of Education (No. 20130061110060 class tutors), the National Natural Science Foundation of China (No. 41504083), and National Basic Research Program of China (973 Program) (No. 2013CB429805).

Li Wen-Ben: Ph.D. candidate, he graduated from Jilin University in 2011. His main research interests are electromagnetic forward modeling and inversion.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, WB., Zeng, ZF., Li, J. et al. 2.5D forward modeling and inversion of frequency-domain airborne electromagnetic data. Appl. Geophys. 13, 37–47 (2016). https://doi.org/10.1007/s11770-016-0548-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11770-016-0548-y

Keywords

Navigation