Skip to main content
Log in

Variable-order rotated staggered-grid method for elastic-wave forward modeling

  • Published:
Applied Geophysics Aims and scope Submit manuscript

Abstract

Numerical simulations of a seismic wavefield are important to analyze seismic wave propagation. Elastic-wave equations are used in data simulation for modeling migration and imaging. In elastic wavefield numerical modeling, the rotated staggered-grid method (RSM) is a modification of the standard staggered-grid method (SSM). The variable-order method is based on the method of variable-length spatial operators and wavefield propagation, and it calculates the real dispersion error by adapting different finite-difference orders to different velocities. In this study, the variable-order rotated staggered-grid method (VRSM) is developed after applying the variable-order method to RSM to solve the numerical dispersion problem of RSM in low-velocity regions and reduce the computation cost. Moreover, based on theoretical dispersion and the real dispersion error of wave propagation calculated with the wave separation method, the application of the original method is extended from acoustic to shear waves, and the calculation is modified from theoretical to time-varying values. A layered model and an overthrust model are used to demonstrate the applicability of VRSM. We also evaluate the order distribution, wave propagation, and computation time. The results suggest that the VRSM order distribution is reasonable and VRSM produces high-precision results with a minimal computation cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alterman, Z., and Karal, F. C., 1968, Propagation of elastic waves in layered media by finite difference methods: Bulletin of the Seismological Society of America, 58(1), 367–398.

    Google Scholar 

  • Aminzadeh, F., Burkhard, N., Nicoletis, L., Rocca, F., and Wyatt, K., 1994, SEG/EAGE 3-D modeling project: 2nd update: The Leading Edge, 13(9), 949–952.

    Google Scholar 

  • Chen, H. M., Zhou, H., Lin, H., and Wang, S. X., 2013, Application of perfectly matched layer for scalar arbitrarily wide-angle wave equations: Geophysics, 78(1), T29–T39.

    Article  Google Scholar 

  • Claerbout, J. F., 1985, Imaging the earth’s interior: Blackwell Scientific Publications, California, 47–49.

    Google Scholar 

  • Dankbaar, J. W. M., 1985, Separation of P-waves and S-waves: Geophysical Prospecting, 33(7), 970–986.

    Article  Google Scholar 

  • Dellinger, J., and Etgen, J., 1990, Wave-field separation in two-dimensional anisotropic media: Geophysics, 55(7), 914–919.

    Article  Google Scholar 

  • Duan, Y. T., Hu, T. Y., Yao, F. C., and Zhang, Y., 2013, 3D elastic wave equation forward modeling based on the precise integration method: Applied Geophysics, 10(1), 71–78.

    Article  Google Scholar 

  • Hendrick, N., and Brand, E., 2006, Practical evaluation of P- and S-wave separation via elastic wave field decomposition: Exploration Geophysics, 37(2), 139–149.

    Article  Google Scholar 

  • Hustedt, B., Operto, S., and Virieux, J., 2004, Mixedgrid and staggered-grid finite-difference methods for frequency-domain acoustic wave modeling: Geophysical Journal International, 157(3), 1269–1296.

    Article  Google Scholar 

  • Jackson, J. D., 1998, Classical electrodynamics, 3rd Edition: John Wiley & Sons, Inc, United States of America, 295–299.

    Google Scholar 

  • Jastram, C., and Tessmer, E., 1994, Elastic modeling on a grid with vertically varying spacing: Geophysical Prospecting, 42(4), 357–370.

    Article  Google Scholar 

  • Jia, Y., and Paul, S., 2009, Elastic wave mode separation for VTI media: Geophysics, 74(5), 19–32.

    Google Scholar 

  • Li, Z. C., Zhang, H., Liu, Q., and Han, W., 2007, Elastic wave high order staggered grid wave separation forward modeling: Oil Geophysical Prospecting, 42(5), 510–515.

    Google Scholar 

  • Liu, Y., and Sen, M. K., 2011a, Finite-difference modeling with adaptive variable-length spatial operators: Geophysics, 76(4), T79–T89.

    Article  Google Scholar 

  • Liu, Y., and Sen, M. K., 2011b, Scalar wave equation modeling with time-space domain dispersion-relationbased staggered-grid finite-difference schemes: Bulletin of the Seismological Society of America, 101(1), 141–159.

    Article  Google Scholar 

  • Liu, Y., and Sen, M. K., 2009, An implicit staggeredgrid finite-difference method for seismic modeling: Geophysical Journal International, 179(1), 459–474.

    Article  Google Scholar 

  • Moczo, P., 1989, Finite-difference technique for SHwave in 2D media using irregular grids-application to the seismic response problem: Geophysical Journal International, 99(2), 321–329.

    Article  Google Scholar 

  • O’Brien, G. S., 2010, 3D rotated and standard staggered finite-difference solutions to Biot’s poroelastic wave equations: Stability condition and dispersion analysis: Geophysics, 75(4), T111–T119.

    Article  Google Scholar 

  • Opršal, I., and Zahradník, J., 1999, Elastic finite-difference method for irregular grids: Geophysics, 64(1), 240–250.

    Article  Google Scholar 

  • Saenger, E. H., and Bohlen, T., 2004, Finite-difference modeling of viscoelastic and anisotropic wave propagation using the rotated staggered grid: Geophysics, 69(2), 583–591.

    Article  Google Scholar 

  • Saenger, E. H., Gold, N., and Shapiro, S. A., 2000, Modeling the propagation of elastic waves using a modified finite-difference method: Wave Motion, 31, 77–92.

    Article  Google Scholar 

  • Saenger, E. H., Ciz, R., Krüger, O. S., Schmalholz, S. M., Gurevich, B., and Shapiro, S. A., 2007, Finite difference modeling of wave propagation on microscale: A snapshot of the work in progress: Geophysics, 72(5), SM293–SM300.

    Article  Google Scholar 

  • Sun, R., McMechan, G. A., Hsiao, H. H., and Chow, J., 2004. Separating P- and S-waves in prestack 3D elastic seismograms using divergence and curl: Geophysics, 69(1), 286–297.

    Article  Google Scholar 

  • Tang, J., Li, J. J., Yao, Z. A., Shao, J., and Sun, C. Y., 2015, Reservoir time-lapse variations and coda wave interferometry: Applied Geophysics, 12(2), 244–254.

    Article  Google Scholar 

  • Tessmer, E., 2000, Seismic finite-difference modeling with spatially varying time steps: Geophysics, 65(4), 1290–1293.

    Article  Google Scholar 

  • Virieux, J., 1984, SH-wave propagation in heterogeneous media: Velocity-stress finite-difference method: Geophysics, 49(11), 1933–1957.

    Article  Google Scholar 

  • Virieux, J., 1986, P-SV wave propagation in heterogeneous media: velocity-stress finite-difference method: Geophysics, 51(4), 889–901.

    Article  Google Scholar 

  • Wang, S. X., Li, X. Y., Qian, Z. P., Di, B. R., and Wei, J. X., 2007, Physical modeling studies of 3-D P-wave seismic for fracture detection: Geophysical Journal International, 168(2), 745–756.

    Article  Google Scholar 

  • Wang, W. Z., Qin, Z., Hu, T. Y., Li, Y. D., and Zhang, Y., 2014, Elastic wave equation rotated-grid forward modeling and imaging based on wave separation method: 76th EAGE Conference and Exhibition, Extended abstract, Th G105 10.

    Google Scholar 

  • Wang, X., Dodds, K., and Zhao, H., 2006, An improved high-order rotated staggered finite-difference algorithm for simulating elastic waves in heterogeneous viscoelastic/anisotropic media: Exploration Geophysics, 37(2), 160–174.

    Article  Google Scholar 

  • Yang, H. X., and Wang, H. X., 2013, A study of damping factors in perfectly matched layers for the numerical simulation of seismic waves: Applied Geophysics, 10(1), 63–70.

    Article  Google Scholar 

  • Yang, J. H., Liu, T., Tang, G., and Hu, T. Y., 2009, Modeling seismic wave propagation within complex structures: Applied Geophysics, 6(1), 30–41.

    Article  Google Scholar 

  • Zhang, Q. S., and George, A. M., 2010, 2D and 3D elastic wave field vector decomposition in the wave number domain for VTI media: Geophysics, 75(3), 13–26.

    Article  Google Scholar 

  • Zhang, Y., and Liu, Y., 2012, 3D poroviscoelastic rotated staggered finite-difference modeling with PML absorbing boundary conditions: 82nd SEG, Annual International Meeting, Expanded Abstracts, 1–5.

    Google Scholar 

  • Zhou, H., Wang, S. X., Li, G. F., and Shen, J. S., 2010, Analysis of complicated structure seismic wave fields: Applied Geophysics, 7(2), 185–192.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tian-Yue Hu.

Additional information

Wang Wei-Zhong received his B.Sc. in Geophysics from China University of Geosciences (Wuhan) in 2013. He is currently a PhD. candidate in the School of Earth and Space Sciences at Peking University. His interests include seismic wave forward modeling and imaging.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, WZ., Hu, TY., Lu, XM. et al. Variable-order rotated staggered-grid method for elastic-wave forward modeling. Appl. Geophys. 12, 389–400 (2015). https://doi.org/10.1007/s11770-015-0507-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11770-015-0507-z

Keywords

Navigation