Skip to main content
Log in

Weighted-elastic-wave interferometric imaging of microseismic source location

  • Published:
Applied Geophysics Aims and scope Submit manuscript

Abstract

Knowledge of the locations of seismic sources is critical for microseismic monitoring. Time-window-based elastic wave interferometric imaging and weighted-elastic-wave (WEW) interferometric imaging are proposed and used to locate modeled microseismic sources. The proposed method improves the precision and eliminates artifacts in location profiles. Numerical experiments based on a horizontally layered isotropic medium have shown that the method offers the following advantages: It can deal with low-SNR microseismic data with velocity perturbations as well as relatively sparse receivers and still maintain relatively high precision despite the errors in the velocity model. Furthermore, it is more efficient than conventional traveltime inversion methods because interferometric imaging does not require traveltime picking. Numerical results using a 2D fault model have also suggested that the weighted-elastic-wave interferometric imaging can locate multiple sources with higher location precision than the time-reverse imaging method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anikiev, D., Valenta, J., Staněk, F., and Eisner, L., 2014, Joint location and source mechanism inversion of microseismic events: Benchmarking on seismicity induced by hydraulic fracturing: Geophysical Journal International, 198(1), 249–258.

    Article  Google Scholar 

  • Artman, B., Podladtchikov, I., and Witten, B., 2010, Source location using time-reverse imaging: Geophysical Prospecting, 58, 861–873.

    Article  Google Scholar 

  • Bardainne, T., Gaucher, E., Magnitude, and Cerda, F., 2009, Comparison of picking-based and waveform-based location methods of microseismic events: Application to a fracturing job: 79th Ann. Soc. Expl. Geophys. Mtg., Expanded Abstracts, 1547–1551.

    Google Scholar 

  • Burch, D. N., Daniels, J., Gillard, M., Underhill, W., Exler, V. A., Favoretti, L., Le Calvez, J., Lecerf, B., Potapenko, D., and Maschio, L., 2009, Live hydraulic fracture monitoring and diversion: Oilfield Review, 21(3), 18–31.

    Google Scholar 

  • Chambers, K., Dando, B. D. E., Jones, G. A., Velasco, R., and Wilson, S. A., 2014, Moment tensor migration imaging: Geophysical Prospecting, 62(4), 879–896.

    Article  Google Scholar 

  • Claerbout, J. F., 1968, Synthesis of a layered medium from its acoustic transmission response: Geophysics, 33(2), 264–269.

    Article  Google Scholar 

  • Das, I., and Zoback, M., 2013, Long-period, long-duration seismic events during hydraulic stimulation of shale and tight-gas reservoirs — part 1: Waveform characteristics: Geophysics, 78(6), KS97–KS108.

    Google Scholar 

  • Dong, L. G., Ma, Z. T., Cao, J. Z., Wang, H. Z., Geng, J. H., Lei, B., and Xu, S. Y., 2000, A staggered-grid high-order difference method of one-order elastic wave equation: Chinese Journal of Geophysics (in Chinese), 43(3), 411–419.

    Google Scholar 

  • Drew, J. E., Leslie, H. D., Armstrong, P. N., and Michard, G., 2005, Automated microseismic event detection and location by continuous spatial mapping: The 81st SPE Annual Technical Conference and Exhibition, SPE Paper 95513.

    Google Scholar 

  • Drew, J. E., White, R. S., Tilmann, F., and Tarasewicz, J., 2013, Coalescence microseismic mapping: Geophysical Journal International, 195(3), 1773–1785.

    Article  Google Scholar 

  • Duncan, P. M., and Eisner, L., 2010, Reservoir characterization using surface microseismic monitoring: Geophysics, 75(5), 75A139–175A146.

    Article  Google Scholar 

  • Eisner, L., Hulsey, B. J., Duncan, P., Jurick, D., Werner, H., and Keller, W., 2010, Comparison of surface and borehole locations of induced seismicity: Geophysical Prospecting, 58(5), 809–820.

    Article  Google Scholar 

  • Fink, M., 1999, Time-reversed acoustics: Scientific American, November, 91–97.

    Google Scholar 

  • Gajewski, D., and Tessmer, E., 2005, Reverse modelling for seismic event characterization: Geophysical Journal International, 163(1), 276–284.

    Article  Google Scholar 

  • Gajewski, D., Anikiev, D., Kashtan, B., and Tessmer, E., 2007, Localization of seismic events by diffraction stacking: 77th Ann. Soc. Expl. Geophys. Mtg., Expanded Abstracts, 1287–1291.

    Google Scholar 

  • Geiger, L., 1912, Probability method for the determination of earthquake epicenters from arrival time only: Bull St Louis Univ, 8, 60–71.

    Google Scholar 

  • Gharti, H. N., Oye, V., Kühn, D., and Zhao, P., 2011, Simultaneous microearthquake location and momenttensor estimation using time-reversal imaging: 81st Ann. Soc. Expl. Geophys. Mtg., Expanded Abstracts, 1632–1637.

    Google Scholar 

  • Grandi, S., and Oates, S., 2009, Microseismic event location by cross-correlation migration of surface array data for permanent reservoir monitoring: 71st Conference & Technical Exhibition, EAGE, Extended Abstracts, X012.

    Google Scholar 

  • Grigoli, F., Cesca, S., Vassallo, M., and Dahm, T., 2013, Automated seismic event location by travel-time stacking: An application to mining induced seismicity: Seismological Research Letters, 84(4), 666–677.

    Article  Google Scholar 

  • Grigoli, F., Cesca, S., Amoroso, O., Emolo, A., Zollo, A., and Dahm, T., 2014, Automated seismic event location by waveform coherence analysis: Geophysical Journal International, 196(3), 1742–1753.

    Article  Google Scholar 

  • Haldorsen, J. B. U., Milenkovic, M., Farmani, M. B., Brooks, N., and Crowell, C., 2012, Locating microseismic events using migration-based deconvolution: 82nd Ann. Soc. Expl. Geophys. Mtg., Expanded Abstracts, 1–5.

    Google Scholar 

  • Haldorsen, J. B. U., Brooks, N. J., and Milenkovic, M., 2013, Locating microseismic sources using migrationbased deconvolution: Geophysics, 78(5), KS73–KS84.

    Article  Google Scholar 

  • Jupe, A., Cowles, J., and Jones, R., 1998, Microseismic monitoring: Listen and see the reservoir: World Oil, 219(12), 171–174.

    Google Scholar 

  • Kao, H., and Shan, S. J., 2004, The source-scanning algorithm: Mapping the distribution of seismic sources in time and space: Geophysical Journal International, 157(2), 589–594.

    Article  Google Scholar 

  • Kao, H., and Shan, S. J., 2007, Rapid identification of earthquake rupture plane using source-scanning algorithm: Geophysical Journal International, 168(3), 1011–1020.

    Article  Google Scholar 

  • Li, J. L., Zhang, H. J., Rodi, W. L., and Toksoz, M. N., 2013, Joint microseismic location and anisotropic tomography using differential arrival times and differential backazimuths: Geophysical Journal International, 195(3), 1917–1931.

    Article  Google Scholar 

  • Li, Z. C., Sheng, G. C., Wang, W. B., Cui, Q. H., and Zhou, D. S., 2014, Time-reverse microseismic hypocenter location with interferometric imaging condition based on surface and downhole multi-components: Oil Geophysical Prospecting, 49(4), 661–666, 671.

    Google Scholar 

  • Liang, B., and Zhu, G. S., 2004, Microseismic monitoring in oil and gas field exploration and development: Petroleum Industry Press, Beijing.

    Google Scholar 

  • Maxwell, S. C., 2010a, Microseimic: Growth born from success: The Leading Edge, 29, 338–343.

    Article  Google Scholar 

  • Maxwell, S. C., Rutledge, J., Jones, R., and Fehler, M., 2010b, Petroleum reservoir characterization using downhole microseismic monitoring: Geophysics, 75(5), 75A129–175A137.

    Article  Google Scholar 

  • McMechan, G. A., 1982, Determination of source parameters by wavefield extrapolation: Geophysical Journal International, 71(4), 613–628.

    Article  Google Scholar 

  • McMechan, G. A., H. Luetgert, J., and Mooney, W. D., 1985, Imaging of earthquake sources in long valley caldera, california, 1983: Bulletin of the Seismological Society of Ameirca, 75, 1005–1020.

    Google Scholar 

  • Miao, H. X., Jiang, F. X., Song, X. J., Song, J. Y., Yang, S. H., and Jiao, J. R., 2012a, Automatically positioning microseismic sources in mining by the stereo tomographic method using full wavefields: Applied Geophysics, 9(2), 168–176.

    Article  Google Scholar 

  • Miao, H. X., Jiang, F. X., Song, X. J., Yang, S. H., and Jiao, J. R., 2012b, Tomographic inversion for microseismic source function and parameters in mining: Applied Geophysics, 9(3), 341–348.

    Article  Google Scholar 

  • Mueller, M., 2013, Meeting the challenge of uncertainty in surface microseismic monitoring: First Break, 31(7), 89–95.

    Google Scholar 

  • Schuster, G. T., 2001, Theory of daylight/interferometric imaging:Tutorial: 63rd Conference & Technical Exhibition, EAGE, Expanded Abstracts, A32.

    Google Scholar 

  • Schuster, G. T., 2009, Seismic interferometry: Cambridge University Press Cambridge, New York.

    Book  Google Scholar 

  • Schuster, G. T., Yu, J., and Sheng, J., 2004, Interferometric/daylight seismic imaging: Geophysical Journal International, 157(2), 838–852.

    Article  Google Scholar 

  • Song, W. Q., Chen, Z. D., and Mao, Z. H., 2008, Hydroracturing break microseismic monitoring technology: China University of Petroleum Press, Dongying.

    Google Scholar 

  • Tian, Y., and Chen, X. F., 2002, Review of seismic location study: Progress in Geophysics, 17(1), 147–155.

    Google Scholar 

  • Wang, C. L., Cheng, J. B., Yin, C., and Liu, H., 2013, Microseismic events location of surface and borehole observation with reverse-time focusing using interferometry technique: Chinese Journal of Geophysics (in Chinese), 56(9), 3184–3196.

    Google Scholar 

  • Wapenaar, K., Draganov, D., and Snieder, R., 2010a, Tutorial on seismic interferometry: Part 1 — basic principles and applications: Geophysics, 75(5), 75A195–175A209.

    Google Scholar 

  • Wapenaar, K., Slob, E., and Snieder, R., 2010b, Tutorial on seismic interferometry: Part 2-underlying theory and new advances: Geophysics, 75(5), 75A211–275A227.

    Google Scholar 

  • Xiao, X., Luo, Y., Fu, Q., Jervis, M., Dasgupta, S., and Kelamis, P., 2009, Locate microseismicity by seismic interferometry: EAGE Passive Seismic Workshop, Extended Abstract, A22.

    Google Scholar 

  • Yang, R. Z., Zhao, Z. G., Peng, W. J., Gu, Y. B., Wang, Z. G., and Zhuang, X. Q., 2013, Integrated application of 3d seismic and microseismic data in the development of tight gas reservoirs: Applied Geophysics, 10(2), 157–169.

    Article  Google Scholar 

  • Yang, W. D., Jin, X., Li, S. Y., and Ma, Q., 2005, Study of seismic location methods: Earthquake Engineering and Engineering Vibration, 25(1), 14–20.

    Google Scholar 

  • Yilmaz, Ö., 2001, Seismic Data Analysis: Processing, Inversion and Interpretation of Seismic Data: Society of Exploration Geophysicists.

    Book  Google Scholar 

  • Zhang, S., Liu, Q. L., Zhao, Q., and Jiang, Y. D., 2002, Application of microseismic monitoring technology in development of oil field: Geophysical Prospecting for Petroleum (in Chinese), 41(2), 226–231.

    Google Scholar 

  • Zhebel, O., and Eisner, L., 2012, Simultaneous microseismic event localization and source mechanism determination: 82nd Ann. Soc. Expl. Geophys. Mtg., Expanded Abstracts, 1–5.

    Google Scholar 

  • Zhebel, O., Gajewski, D., and Vanelle, C., 2010, Localization of seismic events in 3d media by diffraction stacking: 80th Ann. Soc. Expl. Geophys. Mtg., Expanded Abstracts, 2181–2185.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Chen.

Additional information

This work is supported by the R&D of Key Instruments and Technologies for Deep Resources Prospecting ( No. ZDYZ2012-1) and National Natural Science Foundation of China (No. 11374322).

Li Lei, PhD student, Institute of Acoustics, Chinese Academy of Sciences. Main research interests are seismic wave propagation and microseismic event location and imaging.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Chen, H. & Wang, XM. Weighted-elastic-wave interferometric imaging of microseismic source location. Appl. Geophys. 12, 221–234 (2015). https://doi.org/10.1007/s11770-015-0479-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11770-015-0479-z

Keywords

Navigation