Skip to main content
Log in

Hydrological Simulation Using TRMM and CHIRPS Precipitation Estimates in the Lower Lancang-Mekong River Basin

  • Published:
Chinese Geographical Science Aims and scope Submit manuscript

Abstract

Satellite-based products with high spatial and temporal resolution provide useful precipitation information for data-sparse or ungauged large-scale watersheds. In the Lower Lancang-Mekong River Basin, rainfall stations are sparse and unevenly distributed, and the transboundary characteristic makes the collection of precipitation data more difficult, which has restricted hydrological processes simulation. In this study, daily precipitation data from four datasets (gauge observations, inverse distance weighted (IDW) data, Tropical Rainfall Measuring Mission (TRMM) estimates, and Climate Hazards Group InfraRed Precipitation with Stations (CHIRPS) estimates), were applied to drive the Soil and Water Assessment Tool (SWAT) model, and then their capability for hydrological simulation in the Lower Lancang-Mekong River Basin were examined. TRMM and CHIRPS data showed good performances on precipitation estimation in the Lower Lancang-Mekong River Basin, with the better performance for TRMM product. The Nash-Sutcliffe efficiency (NSE) values of gauge, IDW, TRMM, and CHIRPS simulations during the calibration period were 0.87, 0.86, 0.95, and 0.93 for monthly flow, respectively, and those for daily flow were 0.75, 0.77, 0.86, and 0.84, respectively. TRMM and CHIRPS data were superior to rain gauge and IDW data for driving the hydrological model, and TRMM data produced the best simulation performance. Satellite-based precipitation estimates could be suitable data sources when simulating hydrological processes for large data-poor or ungauged watersheds, especially in international river basins for which precipitation observations are difficult to collect. CHIRPS data provide long precipitation time series from 1981 to near present and thus could be used as an alternative precipitation input for hydrological simulation, especially for the period without TRMM data. For satellite-based precipitation products, the differences in the occurrence frequencies and amounts of precipitation with different intensities would affect simulation results of water balance components, which should be comprehensively considered in water resources estimation and planning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbaspour K C, Rouholahnejad E, Vaghefi S et al., 2015. A continental-scale hydrology and water quality model for Europe: calibration and uncertainty of a high-resolution largescale SWAT model. Journal of Hydrology, 524: 733–752. doi: 10.1016/j.jhydrol.2015.03.027

    Article  Google Scholar 

  • AghaKouchak A, Nakhjiri N, 2012. A near real-time satellite-based global drought climate data record. Environmental Research Letters, 7: 044037. doi: 10.1088/1748-9326/7/4/044037

    Article  Google Scholar 

  • Arnold J G, Srinivasan R, Muttiah R S et al., 1998. Large area hydrologic modeling and assessment part ?: model development. Journal of the American Water Resources Association, 34(1): 73–89.

    Article  Google Scholar 

  • Arnold J G, Youssef M A, Yen H et al., 2015. Hydrological processes and model representation: impact of soft data on calibration. Transactions of the American Society of Agricultural and Biological Engineers, 58(6): 1637–1660. doi: 10.13031/trans.58.10726

    Google Scholar 

  • Cho J, Bosch D, Lowrance R et al., 2009. Effect of spatial distribution of rainfall on temporal and spatial uncertainty of SWAT output. Transactions of the American Society of Agricultural and Biological Engineers, 52(5): 1545–1555. doi: 10.13031/2013.29143

    Google Scholar 

  • Duan Z, Liu J, Tuo Y et al., 2016. Evaluation of eight high spatial resolution gridded precipitation products in Adige Basin (Italy) at multiple temporal and spatial scales. Science of the Total Environment, 573: 1536–1553. doi: 10.1016/j.scitotenv.2016. 08.213

    Article  Google Scholar 

  • Fan H, He D, Wang H, 2015. Environmental consequences of damming the mainstream Lancang-Mekong River: a review. Earth-Science Reviews, 146: 77–91. doi: 10.1016/j.earscirev.2015.03.007

    Article  Google Scholar 

  • Galván L, Olías M, Izquierdo T et al., 2014. Rainfall estimation in SWAT: an alternative method to simulate orographic precipitation. Journal of Hydrology, 509: 257–265. doi: 10.1016/j.jhydrol.2013.11.044

    Article  Google Scholar 

  • Gao J, Sheshukov A Y, Yen H et al., 2017. Impacts of alternative climate information on hydrologic processes with SWAT: a comparison of NCDC, PRISM and NEXRAD datasets. Catena, 156: 353–364. doi: 10.1016/j.catena.2017.04.010

    Article  Google Scholar 

  • Haberlandt U, 2007. Geostatistical interpolation of hourly precipitation from rain gauges and radar for a large-scale extreme rainfall event. Journal of Hydrology, 332: 144–157. doi: 10.1016/j.jhydrol.2006.06.028

    Article  Google Scholar 

  • Jiang Shanhu, Ren Liliang, Yong Bin et al., 2016. Evaluation of latest TMPA and CMORPH precipitation products with independent rain gauge observation networks over high-latitude and low-latitude basins in China. Chinese Geographical Science, 26(4): 439–455. doi: 10.1007/s11769-016-0818-x

    Article  Google Scholar 

  • Jin Xin, He Chansheng, Zhang Lanhui et al., 2018. A modified groundwater module in SWAT for improved streamflow simulation in a large, arid endorheic river watershed in Northwest China. Chinese Geographical Science, 28(1): 47–60. doi: 10.1007/s11769-018-0931-0

    Article  Google Scholar 

  • Johnston R, Kummu M, 2012. Water resource models in the Mekong Basin: a review. Water Resources Management, 26(2): 429–455. doi: 10.1007/s11269-011-9925-8

    Article  Google Scholar 

  • Katiraie-Boroujerdy P S, Asanjan A A, Hsu K et al., 2017. Intercomparison of PERSIANN-CDR and TRMM-3B42V7 precipitation estimates at monthly and daily time scales. Atmospheric Research, 193: 36–49. doi: 10.1016/j.atmosres.2017.04.005

    Article  Google Scholar 

  • Katsanos D, Retalis A, Michaelides S, 2016. Validation of a high-resolution precipitation database (CHIRPS) over Cyprus for a 30-year period. Atmospheric Research, 169: 459–464. doi: 10.1016/j.atmosres.2015.05.015

    Article  Google Scholar 

  • Li D, Long D, Zhao J et al., 2017. Observed changes in flow regimes in the Mekong River basin. Journal of Hydrology, 551: 217–232. doi: 10.1016/j.jhydrol.2017.05.061

    Article  Google Scholar 

  • Li X, Zhang Q, Xu C, 2012. Suitability of the TRMM satellite rainfalls in driving a distributed hydrological model for water balance computations in Xinjiang catchment, Poyang lake basin. Journal of Hydrology, 426–427: 28–38. doi: 10.1016/j.jhydrol.2012.01.013

    Article  Google Scholar 

  • Liu Miao, Li Chunlin, Hu Yuanman et al., 2014. Combining CLUE-S and SWAT models to forecast land use change and non-point source pollution impact at a watershed scale in Liaoning province, China. Chinese Geographical Science, 24(5): 540–550. doi: 10.1007/s11769-014-0661-x

    Article  Google Scholar 

  • Ly S, Charles C, Degré A, 2011. Geostatistical interpolation of daily rainfall at catchment scale: the use of several variogram models in the Ourthe and Ambleve catchments, Belgium. Hydrology and Earth System Sciences, 15: 2259–2274. doi: 10.5194/hess-15-2259-2011

    Article  Google Scholar 

  • Mei Y, Nikolopoulos E I, Anagnostou E N et al., 2016. Evaluating satellite precipitation error propagation in runoff simulations of mountainous basins. Journal of Hydrometeorology, 17: 1407–1423. doi: 10.1175/JHM-D-15-0081.1

    Article  Google Scholar 

  • Mekong River Commission, 2005. Overview of the Hydrology of the Mekong Basin. Vientiane: Mekong River Commission.

  • Moriasi D N, Arnold J G, Van Liew M W et al., 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the American Society of Agricultural and Biological Engineers, 50(3): 885–900. doi: 10.13031/2013.23153

    Google Scholar 

  • Mushore T D, Manatsa D, Pedzisai E et al., 2016. Investigating the implications of meteorological indicators of seasonal rainfall performance on maize yield in a rain-fed agricultural system: case study of Mt. Darwin District in Zimbabwe. Theoretical and Applied Climatology, 129(3): 1–7. doi: 10.1007/s00704-016-1838-2

    Google Scholar 

  • Neitsch S L, Arnold J G, Kiniry J R et al., 2011. Soil and Water Assessment Tool: Theoretical Documentation (Version 2009). Texas: Grassland, Soil and Water Research Laboratory, Agricultural Research Service, Blackland Research Center, Texas Agricultural Experiment Station.

    Google Scholar 

  • Nikolopoulos E I, Anagnostou E N, Borga M, 2013. Using highresolution satellite rainfall products to simulate a major flash flood event in northern Italy. Journal of Hydrometeorology, 14: 171–185. doi: 10.1175/JHM-D-12-09.1

    Article  Google Scholar 

  • Räsänen T A, Someth P, Lauri H et al., 2017. Observed river discharge changes due to hydropower operations in the Upper Mekong Basin. Journal of Hydrology, 545: 28–41. doi: 10.1016/j.jhydrol.2016.12.023

    Article  Google Scholar 

  • Rozante J R, Moreira D S, de Goncalves L G G et al., 2010. Combining TRMM and surface observations of precipitation: technique and validation over South America. Weather and Forecast, 25: 885–894. doi: 10.1175/2010WAF2222325.1

    Article  Google Scholar 

  • Sabo J L, Ruhi A, Holtgrieve G W et al., 2017. Designing river flows to improve food security futures in the Lower Mekong Basin. Science, 358: eaao1053. doi: 10.1126/science.aao1053

    Article  Google Scholar 

  • Serrat-Capdevila A, Valdes J B, Stakhiv E Z, 2014. Water management applications for satellite precipitation products: Synthesis and recommendations. Journal of the American Water Resources Association, 50(2): 509–525. doi: 10.1111/jawr.12140

    Article  Google Scholar 

  • Shrestha N K, Qamer F M, Pedreros D et al., 2017. Evaluating the accuracy of Climate Hazard Group (CHG) satellite rainfall estimates for precipitation based drought monitoring in Koshi basin, Nepal. Journal of Hydrology: Regional Studies, 13: 138–151. doi: 10.1016/j.ejrh.2017.08.004

    Google Scholar 

  • Son N T, Chen C F, Chen C R et al., 2012. Monitoring agricultural drought in the Lower Mekong Basin using MODIS NDVI and land surface temperature data. International Journal of Applied Earth Observation and Geoinformation, 18: 417–427. doi: 10.1016/j.jag.2012.03.014

    Article  Google Scholar 

  • Tatsumi K, Yamashiki Y, 2015. Effect of irrigation water withdrawals on water and energy balance in the Mekong River Basin using an improved VIC land surface model with fewer calibration parameters. Agricultural Water Management, 159: 92–106. doi: 10.1016/j.agwat.2015.05.011

    Article  Google Scholar 

  • Thilakarathne M, Sridhar V, 2017. Characterization of future drought conditions in the Lower Mekong River Basin. Weather and Climate Extremes, 17: 47–58. doi: 10.1016/j.wace.2017.07.004

    Article  Google Scholar 

  • Thu H N, Wehn U, 2016. Data sharing in international transboundary contexts: the Vietnamese perspective on data sharing in the Lower Mekong Basin. Journal of Hydrology, 536: 351–364. doi: 10.1016/j.jhydrol.2016.02.035

    Article  Google Scholar 

  • Tobin K J, Bennett M E, 2013. Temporal analysis of Soil and Water Assessment Tool (SWAT) performance based on remotely sensed precipitation products. Hydrological Processes, 27: 505–514. doi: 10.1002/hyp.9252

    Article  Google Scholar 

  • Trejo F J P, Barbosa H A, Peñaloza-Murillo M A et al., 2016. Intercomparison of improved satellite rainfall estimation with CHIRPS gridded product and rain gauge data over Venezuela. Atmósfera, 29(4): 323–342. doi: 10.20937/ATM.2016.29.04.04

    Article  Google Scholar 

  • Tuo Y, Duan Z, Disse M et al., 2016. Evaluation of precipitation input for SWAT modeling in Alpine catchment: a case study in the Adige river basin (Italy). Science of the Total Environment, 573: 66–82. doi: 10.1016/j.scitotenv.2016.08.034

    Article  Google Scholar 

  • Wang W, Lu H, Yang D et al., 2016. Modeling hydrologic processes in the Mekong River Basin using a distributed model driven by satellite precipitation and rain gauge observations. PLoS ONE, 11(3): e0152229. doi:10.1371/journal.pone.0152229

    Article  Google Scholar 

  • Wang W, Lu H, Zhao T et al., 2017. Evaluation and comparison of daily rainfall from latest GPM and TRMM products over the Mekong River Basin. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 99: 1–10. doi: 10.1109/JSTARS.2017.2672786

    Google Scholar 

  • Worqlul A W, Yen H, Collick A S et al., 2017. Evaluation of CFSR, TMPA 3B42 and ground-based rainfall data as input for hydrological models, in data-scarce regions: The upper Blue Nile Basin, Ethiopia. Catena, 152: 242–251. doi: 10.1016/j.catena.2017.01.019

    Article  Google Scholar 

  • Yong B, Liu D, Gourley J J et al., 2015. Global view of real-time TRMM multisatellite precipitation analysis: implications for its successor global precipitation measurement mission. Bulletin of the American Meteorological Society, 96: 283–296. doi: 10.1175/BAMS-D-14-00017.1

    Article  Google Scholar 

  • Zhou M C, Ishidaira H, Takeuchi K, 2008. Comparative study of potential evapotranspiration and interception evaporation by land cover over Mekong basin. Hydrological Processes, 22: 1290–1309. doi: 10.1002/hyp.6939

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daming He.

Additional information

Foundation item: Under the auspices of National Key R&D Program of China (No. 2016YFA0601601), National Natural Science Foundation of China (No. 41601026, 41661099), Science and Technology Planning Project of Yunnan Province, China (No. 2017FB073)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, X., Wu, W., He, D. et al. Hydrological Simulation Using TRMM and CHIRPS Precipitation Estimates in the Lower Lancang-Mekong River Basin. Chin. Geogr. Sci. 29, 13–25 (2019). https://doi.org/10.1007/s11769-019-1014-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11769-019-1014-6

Keywords

Navigation