Skip to main content
Log in

Drought Impacts on Vegetation Indices and Productivity of Terrestrial Ecosystems in Southwestern China During 2001–2012

  • Published:
Chinese Geographical Science Aims and scope Submit manuscript

Abstract

Drought, as a recurring extreme climate event, affects the structure, function, and process of terrestrial ecosystems. Despite the increasing occurrence and intensity of the drought in the past decade in Southwestern China, the impacts of continuous drought events on vegetation in this region remain unclear. During 2001–2012, Southwestern China experienced the severe drought events from 2009 to 2011. Our aim is to characterize drought conditions in the Southwestern China and explore the impacts on the vegetation condition and terrestrial ecosystem productivity. The Standardized Precipitation Index (SPI) was used to characterize drought area and intensity and a light-use efficiency model was used to explore the effect of drought on the terrestrial ecosystem productivity with Moderate Resolution Imaging Spectrometer (MODIS) data. The SPI captured the major drought events in Southwestern China during the study period, indicated that the 12-year period of this study included both ‘normal’ precipitation years and two severe drought events in 2009–2010 and 2011. Results showed that vegetation greenness (Normalized Difference Vegetation Index, NDVI and Enhanced Vegetation Index, EVI) both declined in 2009/2010 drought, but the 2011 drought resulted in less declines of vegetation greenness and productivity due to shorten drought duration and rising temperature. Meanwhile, it was about 5 months lapse between drought events and maximum declines in vegetation greenness for 2009/2010 drought events. In addition, forest, grassland and cropland revealed significant different ecosystem responses to drought. It indicated that grassland showed an early sensitivity to drought, while cropland was the most sensitive to water deficit and forest was more resilient to drought. This study suggests that it is necessary to detect the difference responses of ecosystem to drought in a regional area with satellite data and ecosystem model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson L O, Malhi Y, Aragão L E O C et al., 2010. Remote sensing detection of droughts in Amazonian forest canopies. New Phytologist, 187(3): 733–750. doi: 10.1111/j.1469-8137. 2010.03355.x.

    Article  Google Scholar 

  • Brando P M, Goetz S J, Baccini A et al., 2010. Seasonal and interannual variability of climate and vegetation indices across the Amazon. Proceedings of the National Academy of Sciences of the United States of America, 107(33): 14685–14690. doi: 10.1073/pnas.0908741107

    Article  Google Scholar 

  • Bréda N, Huc R, Granier A et al., 2006. Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Annals of Forest Science, 63(6): 625–644. doi: 10.1051/forest: 2006042

    Article  Google Scholar 

  • Chen G S, Tian H Q, Zhang C et al., 2012. Drought in the Southern United States over the 20th century: variability and its impacts on terrestrial ecosystem productivity and carbon storage. Climatic Change, 114(2): 379–397. doi: 10.1007/s10584-012-0410-z

    Article  Google Scholar 

  • Ciais P, Reichstein M, Viovy N et al., 2005. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature, 437 (7058): 529–533. doi: 10.1038/nature03972

    Article  Google Scholar 

  • Cook E R, Woodhouse C A, Eakin C M et al., 2004. Long-term aridity changes in the western United States. Science, 306 (5698): 1015–1018. doi: 10.1126/science.1102586

    Article  Google Scholar 

  • Dai A G, 2011. Drought under global warming: a review. Wiley Interdisciplinary Reviews-Climate Change, 2(1): 45–65. doi: 10.1002/wcc.81

    Article  Google Scholar 

  • Fernández M E, Gyenge J E, Varela S et al., 2014. Effects of the time of drought occurrence within the growing season on growth and survival of Pinus ponderosa seedlings. Trees, 28 (3): 745–756. doi: 10.1007/s00468-014-0986-1

    Google Scholar 

  • Gao H, Yang S, 2009. A severe drought event in northern China in winter 2008–2009 and the possible influences of La Nina and Tibetan Plateau. Journal of Geophysical Research-Atmospheres, 114 (D24): D24104. doi: 10.1029/2009JD012430

    Article  Google Scholar 

  • Gu Y X, Hunt E, Wardlow B et al., 2008. Evaluation of MODIS NDVI and NDWI for vegetation drought monitoring using Oklahoma Mesonet soil moisture data. Geophysical Research Letters, 35(22): L22401. doi: 10.1029/2008GL035772

    Article  Google Scholar 

  • Huete A, Didan K, Miura T et al., 2002. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing Environment, 83(1–2): 195–213.

    Article  Google Scholar 

  • Huete A, Didan K, Shimabukuro Y E et al., 2006. Amazon rainforests green-up with sunlight in dry season. Geophysical Research Letters, 33(6): L06405. doi: 10.1029/2005GL025583

    Article  Google Scholar 

  • Hutchinson M F, 2001. ANUSPLIN User Guide. Canberra: Australian National University, Canberra.

    Google Scholar 

  • Ji L, Peters A J, 2003. Assessing vegetation response to drought in the northern Great Plains using vegetation and drought indices. Remote Sensing of Environment, 87(1): 85–98. doi: 10.1016/S0034-4257(03)00174-3

    Article  Google Scholar 

  • Klos R J, Wang G G, Bauerle W L et al., 2009. Drought impact on forest growth and mortality in the southeast USA: an analysis using Forest Health and Monitoring data. Ecological Applications, 19(3): 699–708. doi: 10.1890/08-0330.1

    Article  Google Scholar 

  • Knapp A K, Fay P A, Blair J M et al., 2002. Rainfall variability, carbon cycling, and plant species diversity in a mesic grassland. Science, 298(5601): 2202–2205. doi: 10.1126/science.1076347

    Article  Google Scholar 

  • Loarie S R, Duffy P B, Hamilton H et al., 2009. The velocity of climate change. Nature, 462(7276): 1052–1055. doi: 10.1038/nature08649

    Article  Google Scholar 

  • Luo Tianxiang, 1996. Patterns of Net Primary Productivity for Chinese Major Forest Types and Their Mathematical Models. Beijing: Committee of Synthesis Investigation of Natural Resources, Chinese Academy of Sciences, 211. (in Chinese)

    Google Scholar 

  • McKee T B, Doesken N J, Kleist J, 1993. The relationship of drought frequency and duration to time scales. Eighth Conference on Applied Climatology. Anaheim CA, USA: American Meteorological Society, 179–186.

    Google Scholar 

  • Meir P, Metcalfe D B, Costa A C L et al., 2008. The fate of assimilated carbon during drought: impacts on respiration in Amazon rainforests. Philosophical Transactions of the Royal Society B-Biological Sciences, 363(1498): 1849–1855. doi: 10.1098/rstb.2007.0021

    Article  Google Scholar 

  • Mohammat A, Wang X H, Xu X T et al., 2013. Drought and spring cooling induced recent decrease in vegetation growth in Inner Asia. Agricultural and Forest Meteorology, 178–179: 21–30. doi: 10.1016/j.agrformet.2012.09.014

    Article  Google Scholar 

  • Mu Q Z, Zhao M S, Kimball J S et al., 2013. A Remotely Sensed Global Terrestrial Drought Severity Index. Bulletin of the American Meteorological Society, 94(1): 83–98. doi: 10.1175/BAMS-D-11-00213.1.

    Article  Google Scholar 

  • Mueller B, Seneviratne S I, 2012. Hot days induced by precipitation deficits at the global scale. Proceedings of the National Academy of Sciences of the United States of America, 109(31): 12398–12403. doi: 10.1073/pnas.1204330109

    Article  Google Scholar 

  • Nemani R R, Keeling C D, Hashimoto H et al., 2003. Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science, 300(5625): 1560–1563. doi: 10.1126/science.1082750

    Article  Google Scholar 

  • Ni J, Zhang X S, Scurlock J M O, 2001. Synthesis and analysis of biomass and net primary productivity in Chinese forests. Annals of Forest Science, 58(4): 351–384. doi: 10.1051/forest: 2001131

    Article  Google Scholar 

  • Peng C H, Ma Z H, Lei X D et al., 2011. A drought-induced pervasive increase in tree mortality across Canada’s boreal forests. Nature Climate Change, 1(9): 467–471. doi: 10.1038/nclimate1293

    Article  Google Scholar 

  • Phillips O L, Aragão L E O C, Lewis S L et al., 2009. Drought Sensitivity of the Amazon Rainforest. Science, 323(5919): 1344–1347. doi: 10.1126/science.1164033

    Article  Google Scholar 

  • Phillips O L, van der Heijden G, Lewis S L et al., 2010. Drought-mortality relationships for tropical forests. New Phytologist, 187(3): 631–646. doi: 10.1111/j.1469-8137.2010.03359.x

    Article  Google Scholar 

  • Potter C, Klooster S, Myneni R et al., 2003. Continental-scale comparisons of terrestrial carbon sinks estimated from satellite data and ecosystem modeling 1982–1998. Global and Planetary Change, 39(3–4): 201–213. doi: 10.1016/j.gloplacha.2003.07.001

    Article  Google Scholar 

  • Potter C, Klooster S, Hiatt C et al., 2011. Changes in the carbon cycle of Amazon ecosystems during the 2010 drought. Environmental Research Letters, 6(3): 034024. doi: 10.1088/1748-9326/6/3/034024

    Article  Google Scholar 

  • Potter C S, Randerson J T, Field C B et al., 1993. Terrestrial ecosystem production: a process model-based on global satellite and surface data. Global Biogeochemical Cycles, 7(4): 811–841. doi: 10.1029/93GB02725

    Article  Google Scholar 

  • Potter C S, Klooster S, Brooks V, 1999. Interannual variability in terrestrial net primary production: exploration of trends and controls on regional to global scales. Ecosystems, 2(1): 36–48. doi: 10.1007/s100219900056

    Article  Google Scholar 

  • Qiu J, 2010. China drought highlights future climate threats. Nature, 465(7295): 142–143. doi: 10.1038/465142a

    Article  Google Scholar 

  • Qu X, Huang G, Zhou W, 2014. Consistent responses of East Asian summer mean rainfall to global warming in CMIP5 simulations. Theoretical and Applied Climatology, 117(1–2): 123–131. doi: 10.1007/s00704-013-0995-9

    Article  Google Scholar 

  • Reichstein M, Ciais P, Papale D et al., 2007. Reduction of ecosystem productivity and respiration during the European summer 2003 climate anomaly: a joint flux tower, remote sensing and modelling analysis. Global Change Biology, 13(3): 634–651. doi: 10.1111/j.1365-2486.2006.01224.x

    Article  Google Scholar 

  • Saatchi S, Asefi-Najafabady S, Malhi Y et al., 2013. Persistent effects of a severe drought on Amazonian forest canopy. Proceedings of the National Academy of Sciences of the United States of America, 110(2): 565–570. doi: 10.1073/pnas.1204651110

    Article  Google Scholar 

  • Saleska S R, Didan K, Huete A R et al., 2007. Amazon forests green-up during 2005 drought. Science, 318(5850): 612. doi: 10.1126/science.1146663

    Article  Google Scholar 

  • Salinas-Zavala C A, Douglas A V, Diaz H F, 2002. Interannual variability of NDVI in northwest Mexico. Associated climatic mechanisms and ecological implications. Remote Sensing of Environment, 82(2–3): 417–430. doi: 10.1016/S0034-4257(02)00057-3

    Google Scholar 

  • Samanta A, Ganguly S, Hashimoto H et al., 2010. Amazon forests did not green-up during the 2005 drought. Geophysical Research Letters, 37(5): L05401. doi: 10.1029/2009GL042154

    Article  Google Scholar 

  • Schwinning S, Starr B I, Ehleringer J R, 2005. Summer and winter drought in a cold desert ecosystem (Colorado Plateau) part II: effects on plant carbon assimilation and growth. Journal of Arid Environment, 61(1): 61–78. doi: 10.1016/j.jaridenv.2004.07.013

    Article  Google Scholar 

  • Tanja S, Berninger F, Vesala T et al., 2003. Air temperature triggers the recovery of evergreen boreal forest photosynthesis in spring. Global Change Biology, 9(10): 1410–1426. doi: 10.1046/j.1365-2486.2003.00597.x

    Article  Google Scholar 

  • Teuling A J, Seneviratne S I, Stockli R et al., 2010 Contrasting response of European forest and grassland energy exchange to heatwaves. Nature Geoscience, 3(10): 722–727. doi: 10.1038/ngeo950

    Article  Google Scholar 

  • van Oijen M, Beer C, Cramer W et al., 2013. A novel probabilistic risk analysis to determine the vulnerability of ecosystems to extreme climatic events. Environmental Research Letters, 8(1): 015032. doi: 10.1088/1748-9326/8/1/015032

    Article  Google Scholar 

  • Wagle P, Xiao X, Suyker A, 2015. Estimation and analysis of gross primary production of soybean under various management practices and drought conditions. ISPRS Journal of Photogrammetry and Remote Sensing, 99: 70–83

    Article  Google Scholar 

  • Wang J, Rich P M, Price K P, 2003. Temporal responses of NDVI to precipitation and temperature in the central Great Plains, USA. International Journal of Remote Sensing, 24(11): 2345–2364. doi: 10.1080/01431160210154812

    Article  Google Scholar 

  • Wang Lin, Chen Wen, Zhou Wen, 2014. Assessment of Future Drought in Southwest China Based on CMIP5 Multimodel Projections. Advances in Atmospheric Sciences, 31(5): 1035–1050. doi: 10.1007/s00376-014-3223-3

    Article  Google Scholar 

  • Wen X F, Wang H M, Wang J L et al., 2010. Ecosystem carbon exchanges of a subtropical evergreen coniferous plantation subjected to seasonal drought, 2003–2007. Biogeosciences, 7(1): 357–369. doi: 10.5194/bg-7-357-2010

    Article  Google Scholar 

  • Wu Z Y, Lu G H, Wen L et al., 2011. Reconstructing and analyzing China’s fifty-nine year (1951–2009) drought history using hydrological model simulation. Hydrology and Earth System Sciences, 15(9): 2881–2894. doi: 10.5194/hess-15-2881-2011

    Article  Google Scholar 

  • Xiao X M, Zhang Q Y, Braswell B et al., 2004. Modeling gross primary production of temperate deciduous broadleaf forest using satellite images and climate data. Remote Sensing of Environment, 91(2): 256–270. doi: 10.1016/j.rse.2004.03.010

    Article  Google Scholar 

  • Xu L A, Samanta A, Costa M H et al., 2011. Widespread decline in greenness of Amazonian vegetation due to the 2010 drought. Geophysical Research Letters, 38(7): L07402. doi: 10.1029/2011GL046824

    Article  Google Scholar 

  • Xu X T, Piao S L, Wang X H et al., 2012. Spatio-temporal patterns of the area experiencing negative vegetation growth anomalies in China over the last three decades. Environmental Research Letters, 7(3): 035701. doi: 10.1088/1748-9326/7/3/035701

    Article  Google Scholar 

  • Yang J, Gong D Y, Wang W S et al., 2012. Extreme drought event of 2009/2010 over southwestern China. Meteorology and Atmospheric Physics, 115(3–4): 173–184. doi: 10.1007/s00703-011-0172-6

    Article  Google Scholar 

  • Zeng N, Qian H F, Roedenbeck C et al., 2005. Impact of 1998–2002 midlatitude drought and warming on terrestrial ecosystem and the global carbon cycle. Geophysical Research Letters, 32(22): L22709. doi: 10.1029/2005GL024607

    Article  Google Scholar 

  • Zhang L, Xiao J F, Li J et al., 2012. The 2010 spring drought reduced primary productivity in southwestern China. Environmental Research Letters, 7(4): 045706. doi: 10.1088/1748-9326/7/4/045706

    Article  Google Scholar 

  • Zhang W J, Wang H M, Yang F T et al., 2011. Underestimated effects of low temperature during early growing season on carbon sequestration of a subtropical coniferous plantation. Biogeosciences, 8(6): 1667–1678. doi: 10.5194/bg-8-1667-2011

    Article  Google Scholar 

  • Zhao M S, Heinsch F A, Nemani R R et al., 2005. Improvements of the MODIS terrestrial gross and net primary production global dataset. Remote Sensing of Environment, 95(2): 164–176. doi: 10.1016/j.rse.2004.12.011

    Article  Google Scholar 

  • Zhao M S, Running S W, 2010. Drought-Induced Reduction in Global Terrestrial Net Primary Production from 2000 through 2009. Science, 329(5994): 940–943. doi: 10.1126/science.1192666

    Article  Google Scholar 

  • Zhou J, Zhang Z Q, Sun G et al., 2013. Response of ecosystem carbon fluxes to drought events in a poplar plantation in Northern China. Forest Ecology and Management, 300: 33–42. doi: 10.1016/j.foreco.2013.01.007

    Article  Google Scholar 

  • Zhu W Q, Pan Y Z, He H et al., 2006. Simulation of maximum light use efficiency for some typical vegetation types in China, Chinese Science Bulletin, 51(4): 457–463. doi: 10.1007/s11434-006-0457-1

    Article  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge Wenge NI-MEISTER of Hunter College of The City University of New York for help with revising this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Zhou.

Additional information

Foundation item: Under the auspices of National Key Research and Development Program of China (No. 2016YFB0501501, 2017YFB0504000), National Natural Science Foundation of China (No. 41401110, 31400393)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, L., Wang, S., Chi, Y. et al. Drought Impacts on Vegetation Indices and Productivity of Terrestrial Ecosystems in Southwestern China During 2001–2012. Chin. Geogr. Sci. 28, 784–796 (2018). https://doi.org/10.1007/s11769-018-0967-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11769-018-0967-1

Keywords

Navigation