Skip to main content
Log in

Comparison between reconstructions of global anthropogenic land cover change over past two millennia

  • Published:
Chinese Geographical Science Aims and scope Submit manuscript

Abstract

Three global datasets, the History Database of the Global Environment (HYDE), Kaplan and Krumhardt (KK) and Pongratz of reconstructed anthropogenic land cover change (ALCC) were introduced and compared in this paper. The HYDE dataset was reconstructed by Goldewijk and his colleagues at the National Institute of Public Health and the Environment in Netherland, covering the past 12 000 years. The KK dataset was reconstructed by Kaplan and his colleagues, the Soil-Vegetation-Atmosphere Research Group at the Institute of Environmental Engineering in Switzerland, covering the past 8000 years. The Pongratz dataset was reconstructed by Pongratz and her colleagues at the Max Planck Institute for Meteorology in Germany, covering AD 800–1992. The results show that the reconstructed datasets are quite different from each other due to the different methods used. The three datasets all allocated the historical ALCC according to human population density. The main reason causing the differences among the three datasets lies on the different relationships between population density and land use used in each reconstructed dataset. The KK dataset is better than the other two datasets for two important reasons. First, it used the nonlinear relationship between population density and land use, while the other two used the linear relationship. Second, Kaplan and his colleagues adopted the technological development and intensification parameters and considered the wood harvesting and the long-term fallow area resulted from shifting cultivation, which were neglected in the reconstructions of the other two datasets. Therefore, the KK dataset is more suitable as one of the anthropogenic forcing fields for climate simulation over the past two millennia that is recently concerned by two projects, the National Basic Research Program and the Strategic and Special Frontier Project of Science and Technology of the Chinese Academy of Sciences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bonan G B, 1999. Observational evidence for reduction of daily maximum temperature by croplands in the Midwest United States. Journal of Climate, 9(4): 1305–1315.

    Google Scholar 

  • Brovkin V, Ganopolski A, Claussen M et al., 1999. Modelling climate response to historical land cover change. Global Ecology and Biogeography, 8(6): 509–517. doi: 10.1046/j.1365-2699.1999.00169.x

    Article  Google Scholar 

  • Chen Youqi, Verburg P H, 2000. Multi-scale spatial characterization of land use/land cover in China. Scientia Geographica Sinica, 20(3): 197–202. (in Chinese)

    Google Scholar 

  • Chen Youqi, Verburg P H, Xu Bin, 2000. Spatial modeling of land use and its effects in China. Progress in Geography, 19(2): 116–127. (in Chinese)

    Google Scholar 

  • DeFries R S, Townshend J R G, 1994. NDVI-derived land cover classification at a global scale. International Journal of Remote Sensing, 15(17): 3567–3586. doi: 10.1080/014311694 08954345

    Article  Google Scholar 

  • Dirmeyer P A, Shukla J, 1994. Albedo as a modulator of climate response to tropical deforestation. Journal of Geophysical Research, 99(10): 20863–20877. doi: 10.1029/94JD01311

    Article  Google Scholar 

  • Fan Yuting, Chen Yaning, Li Weihong et al., 2011. Impacts of temperature and precipitation on runoff in the Tarim River during the past 50 years. Journal of Arid Land, 3(3): 220–230. doi: 10.3724/SP.J.1227.2011.00220

    Article  Google Scholar 

  • FAO (Food and Agriculture Organization of the United Nations), 2008. FAOSTAT. Rome, Italy: Food and Agriculture Organization of the United Nations (FAO). Available at: http://www.fao.org (accessed October 2008).

    Google Scholar 

  • Foley J A, DeFries R, Asner G P et al., 2005. Global consequences of land use. Science, 309(5734): 570–574. doi: 10.1126/science.1111772

    Article  Google Scholar 

  • Fu C B, 2003. Potential imapacts of human-induced land cover change on East Asia monsoon. Global and Planetary Change, 37(3–4): 219–229. doi: 10.1016/S0921-8181(02)00207-2

    Google Scholar 

  • Gao Jian Hui, Liu Jian, 2010. Modeling study on the characteristics and cause of global temperature change during the Last Millennium. Ludong University Journal (Natural Science Edition), 26(3): 266–270. (in Chinese)

    Google Scholar 

  • Gao X J, Zhang D F, Chen Z X et al., 2007. Land use effects on climate in China as simulated by a regional climate model. Science in China Series D: Earth Science, 50(4): 620–628. doi: 10.1007/s11430-007-2060-y

    Article  Google Scholar 

  • Ge Quansheng, Dai Junhu, He Fanneng et al., 2008. The land use/land cover change and the carbon emissions over China during the past 300 years. Science in China Series D: Earth Science, 38(2): 197–210. (in Chinese)

    Google Scholar 

  • Ge Quansheng, Zheng Jingyun, Man Zhimin et al., 2002. Reconstruction and analysis on the series of winter-half-year temperature changes over the past 2000 years in eastern China. Earth Science Frontiers, 9(1): 169–181. (in Chinese)

    Google Scholar 

  • Goldewijk K K, 2001. Estimating global land use change over the past 300 years: The HYDE database. Global Biogeochemical Cycles, 15(2): 417–433. doi: 10.1029/1999GB001232

    Article  Google Scholar 

  • Goldewijk K K, Battjes C G M, Batjes J J, 1997. A Hundred Year (1890–1990) Database for Integrated Environmental Assessments. Report 422514002. Bilthoven, the Netherlands: National Institute for Public Health and the Environment, 188.

    Google Scholar 

  • Goldewijk K K, Beusen A, Janssen P, 2010. Long term dynamic modeling of global population and built-up area in a spatially explicit way: HYDE 3.1. The Holocene, 20(4): 565–573. doi: 10.1177/0959683609356587

    Article  Google Scholar 

  • Goldewijk K K, Beusen A, Van Drecht G et al., 2011. The HYDE 3.1 spatially explicit database of human-induced global land- use change over the past 12000 years. Global Ecology and Biogeography, 20(1): 73–86. doi: 10.1111/j.1466-8238.2010.00587.x

    Article  Google Scholar 

  • Goldewijk K K, Van Drecht G, Bouwman A F, 2007. Mapping contemporary global cropland and grassland distributions on a 5 × 5 minute resolution. Journal of Land Use Science, 2(3): 167–190. doi: 10.1080/17474230701622940

    Article  Google Scholar 

  • He F N, Li S C, Zhang X Z, 2012. Reconstruction of cropland area and spatial distribution in the mid-Northern Song Dynasty (AD 1004-1085). Journal of Geographical Sciences, 22(2): 361–372. doi: 10.1007/s11442-012-0932-3

    Article  Google Scholar 

  • Houghton R A, 2003. Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850–2000. Tellus Series B-Chemical and Physical Meteorology, 55(2): 378–390. doi: 10.1034/j.1600-0889.2003.01450.x

    Article  Google Scholar 

  • Iverson L R, 1988. Land-use changes in Illinois, USA: The influence of landscape attributes on current and historic land use. Landscape Ecology, 2(1): 45–61. doi: 10.1007/BF00138907

    Article  Google Scholar 

  • Kaplan J O, 2001. Geophysical Applications of Vegetation Modeling. Department of Ecology, Lund: Lund University, 129.

    Google Scholar 

  • Kaplan J O, Krumhardt K M, Erle C E et al., 2010. Holocene carbon emissions as a result of anthropogenic land cover change. The Holocene, 21(5): 775–791. doi: 10.1177/095968 3610386983

    Article  Google Scholar 

  • Kaplan J O, Krumhardt K M, Zimmermann N, 2009. The prehistoric and preindustrial deforestation of Europe. Quaternary Science Reviews, 28(27–28): 3016–3034. doi: 10.1016/j.quascirev.2009.09.028

    Article  Google Scholar 

  • Kaplan J O, Krunmhardt K M, Zimmermann N E, 2011. The effects of land use and climate change on the carbon cycle of Europe over the past 500 years. Global Change Biology, 18(3): 902–914. doi: 10.1111/j.1365-2486.2011.02580.x

    Article  Google Scholar 

  • Krumhardt K M, 2010. ARVE Technical Report#3: Methodology for World-wide Population Estimates: 1000 BC to 1850. Lausanne, Switzerland: école Polytechnique Fédéralede Lausanne, Dept. of Environmental Engineering, ARVE Research Group. Available at: http://arve.epfl.ch/technical_reports/ARVE_tech_report3_pop_methods.pdf.

    Google Scholar 

  • Landscan, 2006. Landscan Global Population Database (the 2004 revision). Oak Ridge, Tennessee: Oak Ridge National Laboratory. Available at: http://www.ornl.gov/landscan (accessed June 2006).

    Google Scholar 

  • Leff B, Ramankutty N, Foley J A, 2004. Geographic distribution of major crops across the world. Global Biogeochemical Cycles, 18: 27. doi: 10.1029/2003GB002108

    Article  Google Scholar 

  • Li Qiaoping, Ding Yihui, Dong Wenjie, 2006. A numerical simulation on impact of historical land-use changes on regional climate in China since 1700. Acta Meterologica Sinica, 64(3): 257–270. (in Chinese)

    Google Scholar 

  • Livi-Bacci M, 2007. A Concise History of World Population (the 4th edition). Oxford, UK: Blackwell Publishing, 279.

    Google Scholar 

  • Loveland T R, Reed B C, Brown J F et al., 2000. Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data. International Journal of Remote Sensing, 21(6–7): 1303–1330. doi: 10.1080/014311600 210191

    Article  Google Scholar 

  • Ma Long, Wu Jinglu, Abuduwaili Jilili, 2011. The climatic and hydrological changes and environmental responses recorded in lake sediments of Xinjiang, China. Journal of Arid Land, 3(1): 1–8. doi: 10.3724/SP.J.1227.2011.00001

    Google Scholar 

  • Maddison A, 2001. The World Economy: A Millennial Perspective. Paris, France: Organisation for Economic Co-operation and Development/Development Centre (OECD), 384.

    Book  Google Scholar 

  • Mather A S, Needle C L, Fairbairn J, 1998. The human drivers of global land cover change: The case of forests. Hydrological Processes, 12(13–14): 1983–1994. doi: 10.1002/(SICI)1099-1085(19981030)12:13/14〈1983::AID-HYP713〉3.0.CO;2-M

    Article  Google Scholar 

  • Matthews E, 1983. Global vegetation and land use: New high resolution data bases for climate studies. Journal of Climate and Applied Meteorology, 22(3): 474–487. doi: 10.1175/1520-0450(1983)022〈0474:GVALUM〉2.0.C0:2

    Article  Google Scholar 

  • McEvedy C, Jones R, 1978. Atlas of World Population History. London: Penguin Books Ltd., 368.

    Google Scholar 

  • Olson J S, 1994. Global Ecosystem Framework-definitions. Sioux Falls, South Dakota: USGS EROS Data Center Internal Report, 37.

    Google Scholar 

  • Olson J S, Watts J A, Allison L J, 1983. Carbon in live vegetation of major world ecosystems. Oak Ridge, Tennessee: Oak Ridge National Laboratory, 180.

    Google Scholar 

  • Olson J, Watts J A, 1982. Major world ecosystem complexes (map, scale 1:30M). In: Clark W C (ed.). Carbon Dioxide Review. Oxford: Oxford University Press, 388–399.

    Google Scholar 

  • Pongratz J, Reick C, Raddatz T et al., 2007. Reconstruction of global land use and land cover AD 800 to 1992. World Data Center for Climate. Available at: http://dx.doi.org/DOI:10.1594/WDCC/RECON_LAND_COVER_800-1992.

    Google Scholar 

  • Pongratz J, Reick C, Raddatz T et al., 2008. A reconstruction of global agricultural areas and land cover for the last millennium. Global Biogeochemical Cycles, 22: 16. doi: 10.1029/2007GB 003153

    Article  Google Scholar 

  • Prentice I C, Cramer W, Harrison S P et al., 1992. A global biome model based on plant physiology and dominance, soil properties and climate. Journal of Biogeography, 19(2): 117–134.

    Article  Google Scholar 

  • Ramankutty N, Foley J A, 1998. Characterizing patterns of global land use: An analysis of global croplands data. Global Biogeochemical Cycles, 12(4): 667–685. doi: 10.1029/98GB02 512

    Article  Google Scholar 

  • Ramankutty N, Foley J A, 1999a. Estimating historical changes in land cover: North American croplands from 1850 to 1992. Global Ecology Biogeography, 8(5): 381–396. doi: 10.1046/j.1365-2699.1999.00141.x

    Article  Google Scholar 

  • Ramankutty N, Foley J A, 1999b. Estimating historical changes in global land cover: Croplands from 1700 to 1992. Global Biogeochemical Cycles, 13(4): 997–1027. doi: 10.1029/1999GB 900046

    Article  Google Scholar 

  • Ramankutty N, Foley J A, Norman J et al., 2002. The global distribution of cultivable lands: Current patterns and sensitivity to possible climate change. Global Ecology & Biogeoprophy, 11(5): 377–392. doi: 10.1046/j.1466-822x.2002.00294.x

    Article  Google Scholar 

  • Ramankutty, 2004. Croplands in West Africa: A geographically explicit dataset for use in models. Earth Interactions, 8(23): 1–22. doi: 10.1175/1087-3562(2004)8〈1:CIWAAG〉2.0.CO;2

    Article  Google Scholar 

  • Rosch M, 1996. New approaches to prehistoric land-use reconstruction in southwestern Germany. Vegetation History and Archaeobotany, 5(1–2): 65–79. doi: 10.1007/BF00189436

    Article  Google Scholar 

  • Turner B L, Moss R H, Skole D L, 1993. Relating land use and global land-cover change: A proposal for an IGBP-HDP core project. Stockholm: International Biosphere-Geosphere Program: A study of global change and the human dimensions of global environmental change programme, 65.

    Google Scholar 

  • Verburg P H, Van Keulen H, 1999. Exploring changes in the spatial distribution of livestock in China. Agricultural Systems, 62(1): 51–67. doi: 10.1016/S0308-521X(99)00055-4

    Article  Google Scholar 

  • Wilson M F, Henderson-Sellers A, 1985. A global archive of land cover and soils data for use in general circulation models. Journal of Climatology, 5(2): 119–143. doi: 10.1002/joc.3370050202

    Article  Google Scholar 

  • Wu H B, Guo Z T, Peng C H, 2003. Land use induced changes of organic carbon storage in soils of China. Global Change Biology, 9(3): 305–315. doi: 10.1046/j.1365-2486.2003.00590.x

    Article  Google Scholar 

  • Yang Xuchao, Zhang Yili, Liu Linshan et al., 2009. Sensitivity of surface air temperature change to land types in China. Science in China Series D: Earth Science, 39(5): 638–646. (in Chinese)

    Google Scholar 

  • Zhang Jie, Chen Xing, 2007. The historical land use and vegetation cover change in Eastern China. Journal of Nanjing University (Natural Sciences), 43(5): 544–555. (in Chinese)

    Google Scholar 

  • Zhu Shujuan, Chang Zhaofeng, 2011. Temperature and precipitation trends in Minqin Desert during the period of 1961–2007. Journal of Arid Land, 3(3): 214–219. doi: 10.3724/SP.J.1227.2011.00214

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Liu.

Additional information

Foundation item: Under the auspices of Strategic and Special Frontier Project of Science and Technology of Chinese Academy of Sciences (No. XDA05080800), National Basic Research Program of China (No. 2010CB950102), National Natural Science Foundation of China (No. 40871007)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, M., Wang, Z., Kaplan, J.O. et al. Comparison between reconstructions of global anthropogenic land cover change over past two millennia. Chin. Geogr. Sci. 23, 131–146 (2013). https://doi.org/10.1007/s11769-013-0596-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11769-013-0596-7

Keywords

Navigation