Skip to main content
Log in

Assessing adaptability of planted trees using leaf traits: A case study with Robinia pseudoacacia L. in the Loess Plateau, China

  • Published:
Chinese Geographical Science Aims and scope Submit manuscript

Abstract

Leaf trait patterns and their variations with climate are interpreted as an adaptive adjustment to environment. This study assessed the adaptability of planted black locust (Robinia pseudoacacia L.) based on the analysis of leaf traits and the comparison of its leaf traits with inter-specific ones existing in the same area. We measured some water and N use related leaf traits: leaf dry mass per unit area (LMA) and N, P and K concentrations based on both leaf area (N area, P area and K area) and leaf mass (N mass, P mass and K mass) of R. pseudoacacia at 31 sites along a water stress gradient in North Shaanxi Province, China. The results show that leaves of R. pseudoacacia have high N mass and low LMA in the study area. High N mass and low LMA are usually representative of luxurious resource use, and will advance plant resource competitiveness in high-resource conditions. As a whole, LMA-nutrient relationships of R. pseudoacacia display patterns that are fairly similar to the inter-specific relationships in both direction and intensity. The tendency for LMA and N area to increase with decreasing water availability and the positive correlation between LMA and N area reflect the trend for R. pseudoacacia to enhance water use efficiency (WUE) at the expense of down-regulated photosynthetic N use efficiency (PNUE) and high construction cost in dry conditions. However, the positive relationship between LMA and N area in high mean annual precipitation (MAP) area is either unremarkable or reversed with decreasing water availability. This implies a lower photosynthetic capacity and a higher construction cost for high-LMA leaves. The inter-specific relationship between LMA and N area is positive and does not change with water availability. This difference between inter-species and intra-species may be due to more diversified anatomies and more specialised structures for inter-species than intra-species. The failure of R. pseudoacacia adaption to dry conditions reflected by LMA-Narea relationship may be partially responsible for the emergence of rampike and dwarf forms found frequently in dry conditions. Incorporating intrinsic characteristics of planted trees into vegetation restoration project will be instructive and meaningful for species selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Almeida A C, Soares J V, Landsberg J J et al., 2007. Growth and water balance of Eucalyptus grandis hybrid plantations in Brazil during a rotation for pulp production. Forest Ecology and Management, 251(1–2): 10–21. doi: 10.1016/j.foreco.2007.06.009

    Article  Google Scholar 

  • Alvarez-Clare S, Kitajima K, 2007. Physical defence traits enhance seedling survival of neotropical tree species. Functional Ecology, 21: 1044–1054. doi: 10.1111/j.1365-2435.2007.01320.x

    Article  Google Scholar 

  • Arrieta S, Suarez F, 2006. Scots pine (Pinus sylvestris L.) plantations contribute to the regeneration of holly (Ilex aquifolium L.) in mediterranean central Spain. European Journal of Forest Research, 125(3): 271–279. doi: 10.1007/s10342-006-0121-y

    Article  Google Scholar 

  • Bacelar E A, Correia C M, Moutinho-Pereira et al., 2004. Sclerophylly and leaf anatomical traits of five field-grown olive cultivars growing under drought conditions. Tree Physiology, 24(2): 233–239.

    Google Scholar 

  • Bellot J, Maestre F T, Chirino E et al., 2004. Afforestation with Pinus halepensis reduces native shrub performance in a Mediterranean semiarid area. Acta Oecologica, 25(1–2): 7–15. doi: 10.1016/j.actao.2003.10.001

    Article  Google Scholar 

  • Boring L R, Swank W T, 1984. The role of black locust (Robinia pseudoacacia) in forest succession. Journal of Ecology, 72(3): 749–766.

    Article  Google Scholar 

  • Bremner J, Mulvaney C, 1982. Nitrogen-total. In: Page A et al. (eds.). Methods of Soil Analysis: Chemical and Microbiological Properties. Madison: American Society of Agronomy and Soil Science Society of America, 595–622.

    Google Scholar 

  • Centritto M, Lucas M E, Jarvis P G, 2002. Gas exchange, biomass, whole-plant water-use efficiency and water uptake of peach (Prunus persica) seedlings in response to elevated carbon dioxide concentration and water availability. Tree Physiology, 22(10): 699–706.

    Google Scholar 

  • Chapin F S, Bloom A J, Field C B et al., 1987. Plant responses to multiple environmental factors. Bioscience, 37(1): 49–57.

    Article  Google Scholar 

  • Cornelissen J H C, Lavorel S, Garnier E et al., 2003. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 51(4): 335–380.

    Article  Google Scholar 

  • Cornwell W K, Bhaskar R, Sack L et al., 2007. Adjustment of structure and function of Hawaiian Metrosideros polymorpha at high vs. low precipitation. Functional Ecology, 21: 1063–1071. doi: 10.1111/j.1365-2435.2007.01323.x

    Article  Google Scholar 

  • Diaz S, Hodgson J G, Thompson K et al., 2004. The plant traits that drive ecosystems: Evidence from three continents. Journal of Vegetation Science, 15(3): 295–304.

    Google Scholar 

  • Dorn L A, Pyle E H, Schmitt J, 2000. Plasticity to light cues and resources in Arabidopsis thaliana: Testing for adaptive value and costs. Evolution, 54(6): 1982–1994.

    Google Scholar 

  • Dye P J, 1996. Response of Eucalyptus grandis trees to soil water deficits. Tree Physiology, 16(1–2): 233–238.

    Google Scholar 

  • Dye P, Versfeld D, 2007. Managing the hydrological impacts of South African plantation forests: An overview. Forest Ecology and Management, 251(1–2): 121–128. doi: 10.1016/j.foreco.2007.06.013

    Article  Google Scholar 

  • Fortunel C, Garnier E, Joffer R et al., 2009. Leaf traits capture the effects of land use changes and climate on litter decomposability of grasslands across Europe. Ecology, 90(3): 598–611. doi: 10.1890/08-0418.1

    Article  Google Scholar 

  • Fu Bojie, Chen Liding, Qiu Yang et al., 2002. Land Use Structure and Ecological Processes in the Loess Hilly Area, China. Beijing: The Commercial Press. (in Chinese)

    Google Scholar 

  • Hallik L, Niinemets U, Wright I J, 2009. Are species shade and drought tolerance reflected in leaf-level structural and functional differentiation in Northern Hemisphere temperate woody flora? New Phytologist, 184(1): 257–274.

    Article  Google Scholar 

  • Hatton T, Reece P, Taylor P et al., 1998. Does leaf water efficiency vary among eucalypts in water-limited environments? Tree Physiology, 18(8–9): 529–536.

    Google Scholar 

  • He Jinsheng, Wang Xiangping, Flynn D F B et al., 2009. Taxonomic, phylogenetic, and environmental trade-offs between leaf productivity and persistence. Ecology, 90(10): 2779–2791.

    Article  Google Scholar 

  • He Jinsheng, Wang Xiangping, Schmid B et al., 2010. Taxonomic identity, phylogeny, climate and soil fertility as drivers of leaf traits across Chinese grassland biomes. Journal of Plant Research, 123(4): 551–561. doi: 10.1007/s10265-009-0294-9

    Article  Google Scholar 

  • He Jinsheng, Wang Zhiheng, Wang Xiangping et al., 2006. A test of the generality of leaf trait relationships on the Tibetan Plateau. New Phytologist, 170(4): 835–848.

    Article  Google Scholar 

  • Hidaka A, Kitayama K, 2009. Divergent patterns of photosynthetic phosphorus-use efficiency versus nitrogen-use efficiency of tree leaves along nutrient-availability gradients. Journal of Ecology, 97(5): 984–991. doi: 10.1111/j.1365-2745.2009.01540.x

    Article  Google Scholar 

  • Hikosaka K, 2004. Interspecific difference in the photosynthesis-nitrogen relationship: patterns, physiological causes, and ecological importance. Journal of Plant Research, 117(6): 481–494. doi: 10.1007/s10265-004-0174-2

    Article  Google Scholar 

  • Hungate B A, Dukes J S, Shaw M R et al., 2003. Nitrogen and climate change. Science, 302(5650): 1512–1513. doi: 10.1126/science.1091390

    Article  Google Scholar 

  • Ikem A, Nwankwoala A, Odueyungbo S et al., 2002. Levels of 26 elements in infant formula from USA, UK, and Nigeria by microwave digestion and ICP-OES. Food Chemistry, 77(4): 439–447. doi: 10.1016/S0308-8146(01)00378-8

    Article  Google Scholar 

  • Li Hongjian, Wang MengBen, Chen Liangfu et al., 1996. Study on hydrologic ecology of Robinia Pseudoacacia population in north-western Shanxi. Chinese Journal of Plant Ecology, 20(2): 151–158. (in Chinese)

    Google Scholar 

  • Li W H, 2004. Degradation and restoration of forest ecosystems in China. Forest Ecology and Management, 201(1): 33–41. doi: 10.1016/j.foreco.2004.06.010

    Article  Google Scholar 

  • Maestre F T, Cortina J, 2004. Are Pinus halepensis plantations useful as a restoration tool in semiarid Mediterranean areas?. Forest Ecology and Management, 198(1–3): 303–317. doi: 10.1016/j.foreco.2004.05.040

    Article  Google Scholar 

  • Nicotra A B, Davidson A, 2010. Adaptive phenotypic plasticity and plant water use. Functional Plant Bioogy, 37(2): 117–127. doi: 10.1071/FP09139

    Article  Google Scholar 

  • Niinemets U, 2001. Global-scale climatic controls of leaf dry mass per area, density, and thickness in trees and shrubs. Ecology, 82(2): 453–469.

    Article  Google Scholar 

  • Oki T, Kanae S, 2006. Global hydrological cycles and world water resources. Science, 313(5790): 1068–1072. doi: 10.1126/science.1128845

    Article  Google Scholar 

  • Oleksyn J, Reich P B, Zytkowiak R et al., 2003. Nutrient conservation increases with latitude of origin in European Pinus sylvestris populations. Oecologia, 136(2): 220–235. doi: 10.1007/s00442-003-1265-9

    Article  Google Scholar 

  • Onoda Y, Hikosaka K, Hirose T, 2004. Allocation of nitrogen to cell walls decreases photosynthetic nitrogen-use efficiency. Functional Ecology, 18(3): 419–425.

    Article  Google Scholar 

  • Padilla F M, Ortega R, Sanchez J et al., 2009. Rethinking species selection for restoration of arid shrublands. Basic and Applied Ecology, 10(7): 640–647. doi: 10.1016/j.baae.2009.03.003

    Article  Google Scholar 

  • Peichl M, Arain A A, 2006. Above- and belowground ecosystem biomass and carbon pools in an age-sequence of temperate pine plantation forests. Agrcultural and Forest Meteorology, 140(1–4): 51–63. doi: 10.1016/j.agrformet.2006.08.004

    Article  Google Scholar 

  • Poorter H, Niinemets U, Poorter L et al., 2009. Causes and consequences of variation in leaf mass per unit area (LMA): A meta-analysis. New Phytologist, 182(3): 565–588. doi: 10.1111/j.1469-8137.2009.02830.x

    Article  Google Scholar 

  • Poorter L, Bongers F, 2006. Leaf traits are good predictors of plant performance across 53 rain forest species. Ecology, 87(7): 1733–1743.

    Article  Google Scholar 

  • Querejeta J I, Barbera Gonzalo G, Granados A et al., 2008. Afforestation method affects the isotopic composition of planted Pinus halepensis in a semiarid region of Spain. Forest Ecology and Management, 254(1): 56–64. doi: 10.1016/j.foreco.2007.07.026

    Article  Google Scholar 

  • Reich P B, Ellsworth D S, Walters M B et al., 1999. Generality of leaf trait relationships: A test across six biomes. Ecology, 80(6): 1955–1969.

    Article  Google Scholar 

  • Reich P B, Oleksyn J, 2004. Global patterns of plant leaf N and P in relation to temperature and latitude. Proceedings of the National Academy of Sciences, 101(30): 11001–11006.

    Article  Google Scholar 

  • Reich P B, Oleksyn J, Wright I J et al., 2010. Evidence of a general 2/3-power law of scaling leaf nitrogen to phosphorus among major plant groups and biomes. Proceedings of the Royal Society B: Biological Sciences, 277(1683): 877–883. doi: 10.1098/rspb.2009.1818

    Article  Google Scholar 

  • Reich P B, Walters M B, Ellsworth D S, 1992. Leaf life-span in relation to leaf, plant, and stand characteristics among diverse ecosystems. Ecological Monographs, 62(3): 365–392. doi: 10.2307/2937116

    Article  Google Scholar 

  • Reich P B, Walters M B, Ellsworth D S, 1997. From tropics to tundra: Global convergence in plant functioning. Proceedings of the National Academy of Sciences, 94(25): 13730–13734.

    Article  Google Scholar 

  • Relyea R A, 2002. Costs of phenotypic plasticity. The American Naturalist, 159(3): 272–282.

    Article  Google Scholar 

  • Salzer J, Matezki S, Kazda M, 2006. Nutritional differences and leaf acclimation of climbing plants and the associated vegetation in different types of an Andean montane rainforest. Oecologia, 147(3): 417–425. doi: 10.1007/s00442-005-0294-y

    Article  Google Scholar 

  • Sakka S G, Klein M, Reinhart K et al., 2002. Prognostic value of extravascular lung water in critically ill patients. Chest, 122(6): 2080–2086.

    Article  Google Scholar 

  • Shan Changjuan, Liang Zongsuo, Hao Wenfang, 2003. Review on growth of locust and soil water in Loess Plateau. Acta Botanica Boreali-Occidentalia Sinica, 23(8): 1341–1346. (in Chinese)

    Google Scholar 

  • Shields L M, 1950. Leaf xeromorphy as related to physiological and structural influences. Botanical Review, 16(8): 399–447.

    Article  Google Scholar 

  • Shipley B, Lechowicz M J, Wright I J et al., 2006. Fundamental trade-offs generating the worldwide leaf economics spectrum. Ecology, 87(3): 535–541.

    Article  Google Scholar 

  • Sultan S E, 2000. Phenotypic plasticity for plant development, function and life history. Trends in Plant Sciences, 5(12): 537–542. doi: 10.1007/BF02869988

    Article  Google Scholar 

  • Thomas R L, Sheard R W, Moyer J R, 1967. Comparison of conventional and automated procedures for nitrogen, phosphorus and potassium analysis of plant material using single digestion. Agronomy Journal, 59(3): 240–243.

    Article  Google Scholar 

  • Thompson K, Parkinson J A, Band S R et al., 1997. A comparative study of leaf nutrient concentrations in a regional herbaceous flora. New Phytologist, 136(4): 679–689. doi: 10.1046/j.1469-8137.1997.00787.x

    Article  Google Scholar 

  • Van Dijk A, Keenan R J, 2007. Planted forests and water in perspective. Forest Ecology and Management, 251(1–2): 1–9. doi: 10.1016/j.foreco.2007.06.010

    Google Scholar 

  • Vendramini F, Diaz S, Gurvich D E et al., 2002. Leaf traits as indicators of resource-use strategy in floras with succulent species. New Phytologist, 154(1): 147–157. doi: 10.1046/j.1469-8137.2002.00357.x

    Article  Google Scholar 

  • Wang Tao, Wu Wei, 2005. Sandy desertification in Northern China. In: Day K A (ed.). China’s Environment and the Challenge of Sustainable Development. New York: M E Sharpe, 233–238.

    Google Scholar 

  • Warton D I, Wright I J, Falster D S et al., 2006. Bivariate line-fitting methods for allometry. Botanical Review, 81(2): 259–291. doi: 10.1017/s1464793106007007

    Google Scholar 

  • West G B, Brown J H, Enquist B J, 1997. A general model for the origin of allometric scaling laws in biology. Science, 276(5309): 122–126. doi: 10.1126/science.276.5309.122

    Article  Google Scholar 

  • Westoby M, 1998. A leaf-height-seed (LHS) plant ecology strategy scheme. Plant and Soil, 199(2): 213–227.

    Article  Google Scholar 

  • Westoby M, Wright I J, 2006. Land-plant ecology on the basis of functional traits. Trends in Ecology & Evolution, 21(5): 261–268. doi: 10.1016/j.tree.2006.02.004

    Article  Google Scholar 

  • Wilson P J, Thompson K, Hodgson J G, 1999. Specific leaf area and leaf dry matter content as alternative predictors of plant strategies. New Phytologist, 143(1): 155–162.

    Article  Google Scholar 

  • Witkowski E T F, Lamont B B, 1991. Leaf specific mass confounds leaf density and thickness. Oecologia, 88(4): 486–493. doi: 10.1007/BF00317710

    Google Scholar 

  • Wright I J, Groom P K, Lamont B B et al., 2004a. Leaf trait relationships in Australian plant species. Functional Plant Biology, 31(5): 551–558.

    Article  Google Scholar 

  • Wright I J, Reich P B, Cornelissen J H C et al., 2005. Assessing the generality of global leaf trait relationships. New Phytologist, 166(2): 485–496. doi: 10.1111/j.1469-8137.2005.01349.x

    Article  Google Scholar 

  • Wright I J, Reich P B, Westoby M et al., 2004b. The worldwide leaf economics spectrum. Nature, 428(6985): 821–827. doi; 10.1038/nature02403

    Article  Google Scholar 

  • Wu Zhengyi, 1980. Vegetation of China. Beijing: Science Press. (in Chinese)

    Google Scholar 

  • Zhang Peichang, Shao Guogan, Zhao Guang et al., 2000. China’s forest policy for the 21st century. Science, 288(5474): 2135–2136. doi: 10.1126/science.288.5474.2135

    Article  Google Scholar 

  • Zheng Shuxia, Shangguan Zhouping, 2007. Spatial patterns of photosynthetic characteristics and leaf physical traits of plants in the Loess Plateau of China. Plant Ecology, 191(2): 279–293. doi: 10.1007/s11258-006-9242-0

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guohua Liu.

Additional information

Foundation item: Under the auspices of National Basic Research Program of China (No. 2007CB407205), National High Technology Research and Development Program of China (No. 2006BAC01A01)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, T., Liu, G., Fu, B. et al. Assessing adaptability of planted trees using leaf traits: A case study with Robinia pseudoacacia L. in the Loess Plateau, China. Chin. Geogr. Sci. 21, 290–303 (2011). https://doi.org/10.1007/s11769-011-0470-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11769-011-0470-4

Keywords

Navigation