Skip to main content
Log in

Simplifying ADRC design with error-based framework: case study of a DC–DC buck power converter

  • Research Article
  • Published:
Control Theory and Technology Aims and scope Submit manuscript

Abstract

In this work, the problem of designing a robust control algorithm for a DC-DC buck power converter is investigated. The applied solution is based on a recently proposed error-based version of the active disturbance rejection control (ADRC) scheme, in which the unknown higher-order terms of the reference signal are treated as additional components of the system “total disturbance”. The motivation here is to provide a practical following of a reference voltage trajectory for the buck converter in specific cases where neither the analytical form of the desired signal nor its future values are known a’priori, hence cannot be directly used for control synthesis. In this work, the application of the error-based ADRC results in a practically appealing control technique, with compact structure, simplified control rule, and intuitive tuning (inherited from the conventional output-based ADRC scheme). Theoretical, numerical, and experimental results are shown to validate the efficacy of the error-based ADRC in buck converter control, followed by a discussion about the revealed theoretical and practical limitations of this approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

Notes

  1. In the considered average model, it has replaced the discrete input \(\mu \in \{0,1\}\), since PWM strategy is used here to generate governing signal from an analog input signal.

  2. Note that the linear system description is valid only as long as it can be ensured that no saturation effects occur in the coil. Otherwise, the inductance L would depend on the current \(i_L\) nonlinearly.

  3. Subscript “0” represents the nominal value of the parameter.

  4. Notation of signals dependence (on time, on states, etc.) will be omitted here and throughout the paper for presentation clearance (e.g., \(v(t,x)=: v(\,\cdot \,) =: v\)) with exception of instants when specification is notably important for the considered context.

  5. Overscore will be used hereinafter to distinguish signals reconstructed by the differentiator from the ones estimated by the observer (circumflex).

  6. One could include this term also in the ESO. However, since both reference (\(v_r\)) and output (\(v_o\)) are assumed here to be available at current time, it is thus reasonable to keep proportional action \(\mu _0 = k_0 e=k_0(v_r-v_o)\) to robustify the control design in the presence of estimation errors, inevitable in practical scenarios [19].

  7. Same observer parametrization has been done in Sect. 4.1.3.

  8. This emulates a scenario where the target signal comes from an outer-loop (i.e., cascade control) or from an entirely different, outside system.

References

  1. Nizami, T. K., Chakravarty, A., & Mahanta, C. (2021). Time bound online uncertainty estimation based adaptive control design for DC-DC buck converters with experimental validation. IFAC Journal of Systems and Control, 15, 100127. https://doi.org/10.1016/j.ifacsc.2020.1001275.

    Article  MathSciNet  Google Scholar 

  2. Han, J. (2009). From PID to active disturbance rejection control. IEEE Transactions on Industrial Electronics, 56(3), 900–906. https://doi.org/10.1109/TIE.2008.2011621.

    Article  Google Scholar 

  3. Gao, Z. (2014). On the centrality of disturbance rejection in automatic control. ISA Transactions, 53(4), 850–857. https://doi.org/10.1016/j.isatra.2013.09.012.

    Article  Google Scholar 

  4. Chen, W. H., Yang, J., Guo, L., & Li, S. (2016). Disturbance-observer-based control and related methods – an overview. IEEE Transactions on Industrial Electronics, 63(2), 1083–1095. https://doi.org/10.1109/TIE.2015.2478397.

    Article  Google Scholar 

  5. Madonski, R., & Herman, P. (2015). Survey on methods of increasing the efficiency of extended state disturbance observers. ISA Transactions, 56, 18–27. https://doi.org/10.1016/j.isatra.2014.11.0081.

    Article  Google Scholar 

  6. Radke, A., & Gao, Z. (2006). A survey of state and disturbance observers for practitioners. In Proceedings of the American Control Conference (pp. 5183–5188). Minneapolis, MN, USA. https://doi.org/10.1109/ACC.2006.1657545.

  7. Sariyildiz, E., Oboe, R., & Ohnishi, K. (2020). Disturbance observer-based robust control and its applications: 35th anniversary overview. IEEE Transactions on Industrial Electronics, 67(3), 2042–2053. https://doi.org/10.1109/TIE.2019.2903752.

    Article  Google Scholar 

  8. Zheng, Q., & Gao, Z. (2018). Active disturbance rejection control: some recent experimental and industrial case studies. Control Theory and Technology, 16(4), 301–313. https://doi.org/10.1007/s11768-018-8142-x.

    Article  MathSciNet  MATH  Google Scholar 

  9. Aguilar-Ibanez, C., Sira-Ramirez, H., & Acosta, J. A. (2017). Stability of active disturbance rejection control for uncertain systems: a Lyapunov perspective. International Journal of Robust and Nonlinear Control, 27(18), 4541–4553. https://doi.org/10.1002/rnc.3812.

    Article  MathSciNet  MATH  Google Scholar 

  10. Nowicki, M., Madonski, R., & Kozlowski, K. (2015). First look at conditions on applicability of ADRC. In International Workshop on Robot Motion and Control (pp. 294–299). Poznan, Poland. https://doi.org/10.1109/RoMoCo.2015.7219750.

  11. Shao, S., & Gao, Z. (2017). On the conditions of exponential stability in active disturbance rejection control based on singular perturbation analysis. International Journal of Control, 90(10), 2085–2097. https://doi.org/10.1080/00207179.2016.1236217.

    Article  MathSciNet  MATH  Google Scholar 

  12. Wu, Z. H., Zhou, H. C., Guo, B. Z., & Deng, F. (2020). Review and new theoretical perspectives on active disturbance rejection control for uncertain finite-dimensional and infinite-dimensional systems. Nonlinear Dynamics, 101(2), 935–959. https://doi.org/10.1007/s11071-020-05845-7.

    Article  Google Scholar 

  13. Xue, W., & Huang, Y. (2015). Performance analysis of active disturbance rejection tracking control for a class of uncertain LTI systems. ISA Transactions, 58, 133–154. https://doi.org/10.1016/j.isatra.2015.05.001.  

    Article  Google Scholar 

  14. Xue, W., & Huang, Y. (2018). Performance analysis of 2-DOF tracking control for a class of nonlinear uncertain systems with discontinuous disturbances. International Journal of Robust Nonlinear Control, 28, 1456–1473. https://doi.org/10.1002/rnc.3972.

    Article  MathSciNet  MATH  Google Scholar 

  15. Sira-Ramirez, H., Luviano-Juarez, A., & Cortes-Romero, J. (2013). Robust input-output sliding mode control of the buck converter. Control Engineering Practice, 21(5), 671–678. https://doi.org/10.1016/j.conengprac.2012.03.008.  

    Article  Google Scholar 

  16. Wang, J., Li, S., Yang, J., Wu, B., & Li, Q. (2015). Extended state observer-based sliding mode control for PWM-based DC-DC buck power converter systems with mismatched disturbances. IET Control Theory Applications, 9(4), 579–586. https://doi.org/10.1049/iet-cta.2014.0220.

    Article  MathSciNet  Google Scholar 

  17. Wang, J., Li, S., Yang, J., Wu, B., & Li, Q. (2016). Finite-time disturbance observer based non-singular terminal sliding-mode control for pulse width modulation based DC-DC buck converters with mismatched load disturbances. IET Power Electronics, 9(9), 1995–2002. https://doi.org/10.1049/iet-pel.2015.0178.

    Article  Google Scholar 

  18. Yang, J., Cui, H., Li, S., & Zolotas, A. (2017). Optimized active disturbance rejection control for DC-DC buck converters with uncertainties using a reduced-order GPI observer. IEEE Transactions on Circuits and Systems, 65(2), 832–841. https://doi.org/10.1109/TCSI.2017.2725386.

    Article  Google Scholar 

  19. Michalek, M. M. (2016). Robust trajectory following without availability of the reference time-derivatives in the control scheme with active disturbance rejection. In Proceedings of the American Control Conference (pp. 1536–1541). Boston, MA, USA. https://doi.org/10.1109/ACC.2016.7525134.

  20. Zhang, H. (2017). Information Driven Control Design: A Case for PMSM Control. Ph.D. thesis. Cleveland: Cleveland State University.

  21. Madonski, R., Stankovic, M., Ferdjali, A., Shao, S., & Gao, Z. (2020). General ADRC design for systems with periodic disturbances of unknown and varying frequencies. Journal of Dynamic Systems, Measurement, and Control, 143(1), 011006. https://doi.org/10.1115/1.4048353.

    Article  Google Scholar 

  22. Madoński, R., Stankovic, M., Shao, S., Gao, Z., Yang, J., & Li, S. (2020). Active disturbance rejection control of torsional plant with unknown frequency harmonic disturbance. Control Engineering Practice, 100, 104413. https://doi.org/10.1016/j.conengprac.2020.104413.

    Article  Google Scholar 

  23. Chen, S., Chen, Z., & Zhao, Z. (2020). An error-based active disturbance rejection control with memory structure. Measurement and Control. https://doi.org/10.1177/0020294020915219.

    Article  Google Scholar 

  24. Ramírez-Neria, M., Madonski, R., Luviano-Jurez, A., Gao, Z., & Sira-Ramírez, H. (2020). Design of ADRC for second-order mechanical systems without time-derivatives in the tracking controller. In Proceedings of the American Control Conference (pp. 2623–2628). Denver, CO, USA. https://doi.org/10.23919/ACC45564.2020.9147338.

  25. Łakomy, K., & Madonski, R. (2020). Cascade extended state observer for active disturbance rejection control applications under measurement noise. ISA Transactions. https://doi.org/10.1016/j.isatra.2020.09.007.

    Article  Google Scholar 

  26. Łakomy, K., Madonski, R., Dai, B., Yang, J., Kicki, P., Ansari, M., et al. (2021). Active disturbance rejection control with sensor noise suppressing observer for DC-DC buck power converters. IEEE Transactions on Industrial Electronics,. https://doi.org/10.1109/TIE.2021.3055187.

    Article  Google Scholar 

  27. Ramírez-Neria, M., Madonski, R., Shao, S., & Gao, Z. (2020). Robust tracking in underactuated systems using flatness-based ADRC with cascade observers. Journal of Dynamic Systems, Measurement, and Control, 142(9), 091002. https://doi.org/10.1115/1.4046799.

    Article  Google Scholar 

  28. Łakomy, K., Patelski, R., & Pazderski, D. (2020). ESO architectures in the trajectory tracking ADR controller for a mechanical system: a comparison. A. Bartoszewicz, J. Kabziński, & J. Kacprzyk (Eds.), Advanced, Contemporary Control. (pp. 1323–1335) Cham: Springer. https://doi.org/10.1007/978-3-030-50936-1_110.

    Google Scholar 

  29. Łakomy, K., & Michaek, M. (2020). Robust output-feedback VFO-ADR control of underactuated spatial vehicles in the task of following non-parametrized paths. European Journal of Control. https://doi.org/10.1016/j.ejcon.2020.07.006.

    Article  Google Scholar 

  30. Lechekhab, T. E., Manojlovic, S., Stankovic, M., Madonski, R., & Simic, S. (2020). Robust error-based active disturbance rejection control of a quadrotor. Aircraft Engineering and Aerospace Technology. https://doi.org/10.1108/AEAT-12-2019-0266.

    Article  Google Scholar 

  31. Madonski, R., Łakomy, K., & Yang, J. (2020). Comparative study of output-based and error-based ADRC schemes in application to buck converter-fed DC motor system. In IEEE Conference on Decision and Control (pp. 2744–2749). Jeju Island, South Korea. https://doi.org/10.1109/CDC42340.2020.9304198.

  32. Madonski, R., Shao, S., Zhang, H., Gao, Z., Yang, J., & Li, S. (2019). General error-based active disturbance rejection control for swift industrial implementations. Control Engineering Practice, 84, 218–229. https://doi.org/10.1016/j.conengprac.2018.11.021.  

    Article  Google Scholar 

  33. Madonski, R., Gao, Z., & Lakomy, K. (2015). Towards a turnkey solution of industrial control under the active disturbance rejection paradigm. In Conference of the Society of Instrument and Control Engineers of Japan (pp. 616–621). Hangzhou, China. https://doi.org/10.1109/SICE.2015.7285478.

  34. Xue, W., Huang, Y., & Yang, X. (2010). What kinds of system can be used as tracking-differentiator. In Proceedings of the Chinese Control Conference (pp. 6113–6120). Beijing, China.

  35. Gao, Z. (2003). Scaling and bandwidth-parameterization based controller tuning. In Proceedings of the American Control Conference (pp. 4989–4996). Denver, CO, USA. https://doi.org/10.1109/ACC.2003.1242516.

  36. Sira-Ramirez, H., & Silva-Ortigoza, R. (2006). Control Design Techniques in Power Electronics Devices. London: Springer.

    Google Scholar 

  37. Kokotovic, P., Khalil, H. K., & O’Reilly, J. (1999). Singular Perturbation Methods in Control: Analysis and Design. Philadelphia: SIAM. https://doi.org/10.1137/1.9781611971118.

    Book  MATH  Google Scholar 

  38. Sira-Ramirez, H., Linares-Flores, J., Garcia-Rodriguez, C., & Contreras-Ordaz, M. A. (2014). On the control of the permanent magnet synchronous motor: an active disturbance rejection control approach. IEEE Transactions on Control Systems Technology, 22(5), 2056–2063. https://doi.org/10.1109/TCST.2014.2298238.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fundamental Research Funds for the Central Universities (No. 21620335).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafal Madonski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madonski, R., Łakomy, K. & Yang, J. Simplifying ADRC design with error-based framework: case study of a DC–DC buck power converter. Control Theory Technol. 19, 94–112 (2021). https://doi.org/10.1007/s11768-021-00035-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11768-021-00035-1

Keywords

Navigation