Skip to main content
Log in

Transfer function analysis and implementation of active disturbance rejection control

  • Research Article
  • Published:
Control Theory and Technology Aims and scope Submit manuscript

Abstract

To support the adoption of active disturbance rejection control (ADRC) in industrial practice, this article aims at improving both understanding and implementation of ADRC using traditional means, in particular via transfer functions and a frequency-domain view. First, to enable an immediate comparability with existing classical control solutions, a realizable transfer function implementation of continous-time linear ADRC is introduced. Second, a frequency-domain analysis of ADRC components, performance, parameter sensitivity, and tuning method is performed. Finally, an exact implementation of discrete-time ADRC using transfer functions is introduced for the first time, with special emphasis on practical aspects such as computational efficiency, low parameter footprint, and windup protection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Han, J. (2009). From PID to active disturbance rejection control. IEEE Transactions on Industrial Electronics, 56(3), 900–906.

    Article  Google Scholar 

  2. Gao, Z. (2003). Scaling and bandwidth-parameterization based controller tuning. In Proceedings of the American Control Conference (pp. 4989–4996). Denver, CO, USA.

  3. Zheng, Q., & Gao, Z. (2010) . On practical applications of active disturbance rejection control. In Proceedings of the 29th Chinese Control Conference (pp. 6095–6100). Beijing, China.

  4. Zheng, Q., & Gao, Z. (2018). Active disturbance rejection control: Some recent experimental and industrial case studies. Control Theory and Technology, 16(4), 301–313.

    Article  MathSciNet  Google Scholar 

  5. Huba, M., Hypiusová, M., & Ťapák, P. (2019) Learning objects and experiments for active disturbance rejection control. In Proceedings of the 5th Experiment International Conference (exp.at'19) (pp. 161–166). Funchal, Portugal.

  6. Fliess, M., & Join, C. (2013). Model-free control. International Journal of Control, 86(12), 2228–2252.

    Article  MathSciNet  Google Scholar 

  7. Gao, Z. (2006). Active disturbance rejection control: A paradigm shift in feedback control system design. In Proceedings of the American Control Conference (pp. 2399–2405). Minneapolis, MN, USA.

  8. Herbst, G. (2016). Practical active disturbance rejection control: Bumpless transfer, rate limitation, and incremental algorithm. IEEE Transactions on Industrial Electronics, 63(3), 1754–1762.

    Article  Google Scholar 

  9. Jin, H., Song, J., Zeng, S., & Lan, W. (2018). Linear active disturbance rejection control tuning approach guarantees stability margin. In Proceedings of the 15th International Conference on Control, Automation, Robotics and Vision (ICARCV) (pp. 1132 – 1136). Singapore.

  10. Jin, H., Song, J., Lan, W., & Gao, Z. (2020). On the characteristics of ADRC: a PID interpretation. Science China – Information Sciences, 63(10), 209201 . https://doi.org/10.1007/s11432-018-9647-6.

    Article  Google Scholar 

  11. Tan, W., & Fu, C. (2016). Linear active disturbance-rejection control: Analysis and tuning via IMC. IEEE Transactions on Industrial Electronics, 63(4), 2350–2359.

    Google Scholar 

  12. Fu, C., & Tan, W. (2016). Tuning of linear ADRC with known plant information. ISA Transactions, 65, 384–393.

    Article  Google Scholar 

  13. Zhou, R., & Tan, W. (2019). Analysis and tuning of general linear active disturbance rejection controllers. IEEE Transactions on Industrial Electronics, 66(7), 5497–5507.

    Article  Google Scholar 

  14. Zhou, R., Fu, C., & Tan, W. (2020). Implementation of linear controllers via active disturbance rejection control structure. IEEE Transactions on Industrial Electronics. https://doi.org/10.1109/TIE.2020.2992951.

    Article  Google Scholar 

  15. Michalek, M. M. (2016). Robust trajectory following without availability of the reference time-derivatives in the control scheme with active disturbance rejection. In Proceedings of the American Control Conference (pp. 1536–1541). Boston, MA, USA.

  16. Mandali, A., Dong, L., & Morinec, A. (2020). Robust controller design for automatic voltage regulation. In Proceedings of the American Control Conference (pp. 2617–2622). Denver CO, USA.

  17. Madoński, R., Shao, S., Zhang, H., Gao, Z., Yang, J., & Li, S. (2019). General error-based active disturbance rejection control for swift industrial implementations. Control Engineering Practice, 84, 218–229.

    Article  Google Scholar 

  18. Tian, G., & Gao, Z. (2007). Frequency response analysis of active disturbance rejection based control system. In Proceedings of the 16th IEEE International Conference on Control Applications (pp. 1595–1599). Singapore.

  19. Xue, W., & Huang, Y. (2013). On frequency-domain analysis of ADRC for uncertain system. In Proceedings of the American Control Conference (pp. 6637–6642). Washington, DC, USA.

  20. Huang, Y., & Xue, W. (2014). Active disturbance rejection control: Methodology and theoretical analysis. ISA Transactions, 53(4), 963–976.

    Article  MathSciNet  Google Scholar 

  21. Zheng, Q., & Gao, Z. (2016). Active disturbance rejection control: Between the formulation in time and the understanding in frequency. Control Theory and Technology, 14(3), 250–259.

    Article  MathSciNet  Google Scholar 

  22. Zhang, D., Yao, X., & Wu, Q. (2015). Frequency-domain characteristics analysis of linear active disturbance rejection control for second-order systems. In Proceedings of the 34th Chinese Control Conference (pp. 53–58).  Hangzhou, China.

  23. Alvarez, U., Olascoaga, A., Rivera, D., Mendoza, A. R., Garcia, O., & Amezquita-Brooks, L. (2017). Active disturbance rejection control for micro air vehicles using frequency domain analysis. Congreso Nacional de Control Automático, 683–688.

  24. Zhang, Y., Xue, Y., Li, D., Gao, Z., Niu, H., & Huang, H. (2017). Frequency response analysis on modified plant of extended state observer. In Proceedings of the 17th International Conference on Control, Automation and Systems (ICCAS) (pp. 1237–1241). South Korea.

  25. Zhao, S., & Gao, Z. (2010). Active disturbance rejection control for non-minimum phase systems. In Proceedings of the 29th Chinese Control Conference  (pp. 6066–6070). Beijing, China.

  26. Huang, C., & Gao, Z. (2013). On transfer function representation and frequency response of linear active disturbance rejection control. In Proceedings of the 32th Chinese Control Conference (pp. 72–77). Xi'an, China.

  27. Zhang, C., Zhu, J., & Gao, Y. (2014). Order and parameter selections for active disturbance rejection controller. Control Theory & Applications, 31(11), 1480–1485 (in Chinese).

    Google Scholar 

  28. Zhang, R., Wang, W., & Zhang, S. (2017). Gray active disturbance rejection control and frequency domain analysis of mass-damper plant. Boletín Técnico, 55(3), 341–347.

    Google Scholar 

  29. Zhang, R., Zhang, S., Xue, Y., Hu, Y., & Wang, W. (2017). Lower-order active disturbance rejection control and frequency analysis of high order system. In Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Cleveland, OH, USA.

  30. Herbst, G. (2013). A simulative study on active disturbance rejection control (ADRC) as a control tool for practitioners. Electronics, 2(3), 246–279.

    Article  MathSciNet  Google Scholar 

  31. Radke, A., & Gao, Z. (2006). A survey of state and disturbance observers for practitioners. In Proceedings of the American Control Conference (pp. 5183–5188). Minneapolis, MN, USA.

  32. Madoński, R., Gao, Z., & Łakomy, K. (2015). Towards a turnkey solution of industrial control under the active disturbance rejection paradigm. In Proceedings of the 54th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE) (pp. 616–621). Hangzhou, China.

  33. Miklosovic, R., Radke, A., & Gao, Z. (2006). Discrete implementation and generalization of the extended state observer. In Proceedings of the American Control Conference (pp. 2209–2214). Minneapolis, MN, USA.

  34. Herbst, G., Hempel, A.-J., Göhrt, T., & Streif, S. (2020). Half-gain tuning for active disturbance rejection control. In Proceedings of the 21st IFAC World Congress (pp. 1341–1346). Berlin, Germany.

  35. Venable, H. D. (1983). The K factor: A new mathematical tool for stability analysis and synthesis. In Proceedings of Powercon 10, Tenth National Solid-State Power Conversion Conference.

  36. Hägglund, T. (2012). Signal filtering in PID control. IFAC Proceedings Volumes, 45(3), 1–10.

    Article  Google Scholar 

  37. Larsson, P.-O., & Hägglund, T. (2011). Control signal constraints and filter order selection for PI and PID controllers. In Proceedings of the American Control Conference (pp. 4994–4999). San Francisco, CA, USA.

  38. Åström, K. J., & Murray, R. M. (2008). Feedback Systems: An Introduction for Scientists and Engineers. Princeton: Princeton University Press.

    Book  Google Scholar 

  39. Suntio, T., Messo, T., & Puukko, J. (2017). Power Electronic Converters: Dynamics and Control in Conventional and Renewable Energy Applications. Weinheim: Wiley-VCH.

    Book  Google Scholar 

  40. Åström, K. J., & Hägglund, T. (2006). Advanced PID Control. Research Triangle Park, NC: ISA—The Instrumentation, Systems, and Automation Society.

    Google Scholar 

  41. Smith, C. L. (2010). Advanced Process Control: Beyond Single Loop Control. Hoboken, NJ: Wiley.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gernot Herbst.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herbst, G. Transfer function analysis and implementation of active disturbance rejection control. Control Theory Technol. 19, 19–34 (2021). https://doi.org/10.1007/s11768-021-00031-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11768-021-00031-5

Keywords

Navigation