Skip to main content
Log in

Adaptive fault-tolerant control of linear time-invariant systems in the presence of actuator saturation

  • Published:
Journal of Control Theory and Applications Aims and scope Submit manuscript

Abstract

This paper studies the problem of designing adaptive fault-tolerant controllers for linear time-invariant systems with actuator saturation. New methods for designing indirect adaptive fault-tolerant controllers via state feedback are presented for actuator fault compensations. Based on the on-line estimation of eventual faults, the adaptive fault-tolerant controller parameters are updating automatically to compensate the fault effects on systems. The designs are developed in the framework of linear matrix inequality (LMI) approach, which can enlarge the domain of attraction of closed-loop systems in the cases of actuator saturation and actuator failures. Two examples are given to illustrate the effectiveness of the design method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Wen, S. Roy, A. Saberi. On the disturbance response and external stability of a saturating static-feedback-controlled double integrator[J]. Automatica, 2008, 44(8): 2191–2196.

    Article  Google Scholar 

  2. M. L. Corradini, G. Orlando. Linear unstable plants with saturating actuators: Robust stabilization by a time varying sliding surface[J]. Automatica, 2007, 43(1): 88–94.

    Article  MATH  MathSciNet  Google Scholar 

  3. H. Chen, F. Allgöwer. A quasi-infinite horizon nonlinear model predictive control scheme with guaranteed stability[J]. Automatica, 1998, 34(10): 1205–1218.

    Article  MATH  MathSciNet  Google Scholar 

  4. D. Q. Mayne, J. B. Rawlings, C. V. Rao, et al. Constrained model predictive control: Stability and optimality[J]. Automatica, 2000, 36(6): 789–814.

    Article  MATH  MathSciNet  Google Scholar 

  5. W. Chen, D. Ballance, J. OReilly. Optimisation of attraction domains of nonlinear MPC via LMI methods[C]//Proceedings of the 2001 IEEE American Control Conference. New York: IEEE press, 2001: 3067–3072

    Google Scholar 

  6. J. De Don’a, A. Seron, M. M. Mayne, et al. Enlarged terminal sets guaranteeing stability of receding horizon control[J]. Systems & Control Letters, 2002, 47(1): 57–63.

    Article  MathSciNet  Google Scholar 

  7. D. Limon, T. Alamo, E. F. Camacho. Stable constrained MPC without terminal constraint[C]//Proceedings of the 2003 IEEE American Control Conference. New York: IEEE Press, 2003: 4893–4898.

    Chapter  Google Scholar 

  8. L. Magni, G. De Nicolao, L. Magnani, et al. A stabilizing model-based predictive control algorithm for nonlinear systems[J]. Automatica, 2001, 37(9): 1351–1362.

    Article  MATH  MathSciNet  Google Scholar 

  9. J. M. Gomes da Silva Jr., S. Tarbouriech. Anti-windup design with guaranteed regions of stability: an LMI-based approach[J]. IEEE Transactions on Automatic Control, 2005, 50(1): 106–111.

    Article  MathSciNet  Google Scholar 

  10. G. Grimm, J. Hatfield, I. Postlethwaite, et al. Antiwindup for stable linear systems with input saturation: An LMI-based synthesis[J]. IEEE Transactions on Automatic Control, 2003, 48(9): 1509–1525.

    Article  MathSciNet  Google Scholar 

  11. F. Wu, B. Lu. Anti-windup control design for exponentially unstable LTI systems with actuator saturation[J]. Systems & Control Letters, 2004, 52(3/4): 304–322.

    MathSciNet  Google Scholar 

  12. D. Dai, T. Hu, A. R. Teel, et al. Control of saturated linear plants via output feedback containing an internal deadzone loop[C]//Proceedings of the 2006 IEEE American Control Conference. New York: IEEE Press, 2006: 5239–5245.

    Chapter  Google Scholar 

  13. J. M. Gomes da Silva Jr., S. Tarbouriech, R. Reginatto. Analysis of regions of stability for linear systems with saturating inputs through an anti-windup scheme[C]//Proceedings of the 2002 IEEE Conference Control Applications (CCA/CACSD02). New York: IEEE Press, 2002: 1106–1111.

    Google Scholar 

  14. T. Hu, A. R Teel, L. Zaccarian. Anti-windup synthesis for linear control systems with input saturation: achieving regional, nonlinear performance[J]. Automatica, 2008, 44(2): 512–519.

    Article  Google Scholar 

  15. Y. Cao, Z. Lin, D. G. Ward. An antiwindup approach to enlarging domain of attraction for linear systems subject to actuator saturation[J]. IEEE Transactions on Automatic Control, 2002, 47(1): 140–145.

    Article  MathSciNet  Google Scholar 

  16. F. Wu, Z. Lin, Q. Zheng. Output Feedback Stabilization of Linear Systems with Actuator Saturation[J]. IEEE Transactions on Automatic Control, 2007, 52(1): 122–128.

    Article  MathSciNet  Google Scholar 

  17. T. Hu, Z. Lin, B. M. Chen. An analysis and design method for linear systems subject to actuator saturation and disturbance[J]. Automatica, 2002, 38(2): 351–359.

    Article  MATH  Google Scholar 

  18. F. Liao, J. Wang, G. Yang. Reliable robust flight tracking control: An LMI approach[J]. IEEE Transactions Control Systems Technology, 2002, 10(1): 76–89.

    Article  Google Scholar 

  19. R. J. Veillette. Reliable linear-quadratic state-feedback control[J]. Automatica, 1995, 31(1): 137–143.

    Article  MATH  MathSciNet  Google Scholar 

  20. G. Yang, J. Wang, Y. C. Soh. Reliable H controller design for linear systems[J]. Automatic, 2001, 37(5): 717–725.

    MATH  MathSciNet  Google Scholar 

  21. G. Yang, K. Y. Lum. Fault-tolerant flight tracking control with stuck faults[C]//Proceedings of the 2003 IEEE American Control Conference. New York: IEEE Press, 2003: 521–526.

    Chapter  Google Scholar 

  22. Q. Zhao, J. Jiang. Reliable state feedback control system design against actuator failures[J]. Automatica, 1998, 34(10): 1267–1272.

    Article  MATH  Google Scholar 

  23. J. D. Boskovic, R. K. Mehra. Stable multiple model adaptive flight control for accommdation of a large class of control effector failures[C]//Proceedings of the 1999 IEEE American Control Conference. New York: IEEE Press, 1999: 1920–1924.

    Google Scholar 

  24. M. A. Demetrioui. Adaptive reorganization of switched systems with faulty actuators[C]//Proceedings of the 2001 IEEE Conference on Decision and Control. New York: IEEE Press, 2001: 1879–1884.

    Google Scholar 

  25. K. S. Kim, K. J. Lee, Y. D. Kim. Reconfigurable flight control system design using direct adaptive method[J]. Journal of Guidance, Control and Dynamics, 2003, 26(4): 543–550.

    Article  Google Scholar 

  26. M. Mak, K. Hagino. Robust control with adaptation mechanism for improving transient behaviour[J]. International Journal of Control, 1999, 72: 1218–1226.

    Article  MathSciNet  Google Scholar 

  27. G. Tao, S. M. Joshi, X. Ma. Adaptive state feedback and tracking control of systems with actuator failures[J]. IEEE Transactions on Automatic Control, 2001, 46(1): 78–95.

    Article  MATH  MathSciNet  Google Scholar 

  28. Y. Zhang, J. Jiang. Integrated active fault-tolerant control using IMM approach[J]. IEEE Transactions on Aerospace and Electronic Systems, 2001, 37(4): 1221–1235.

    Article  Google Scholar 

  29. T. Hu, Z. Lin. Control Systems with Actuator Saturation: Analysis and Design[M]. Boston: BirkhTauser, 2001.

    Google Scholar 

  30. A. E. Bryson. Control of Spacecraft and Aircraft[M]. Princeton: Princeton University Press, 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Guan.

Additional information

This work was partly supported by Program for New Century Excellent Talents in University (NCET-04-0283), the Funds for Creative Research Groups of China (No.60521003), Program for Changjiang Scholars and Innovative Research Team in University (No.IRT0421), the State Key Program of National Natural Science of China (No.60534010), the Funds of National Science of China (No.60674021) and the Funds of PhD program of MOE, China (No.20060145019) and the 111 Project (B08015).

Wei GUAN is a Ph.D. candidate at the College of Information Science and Engineering, Northeastern University. His research interests include actuator saturation and state constraints.

Guanghong YANG is a professor at Northeastern University. His current research interests cover fault-tolerant control, fault detection and isolation, and robust control. He is also a senior member of IEEE, an associate editor for the International Journal of Control, Automation and Systems (IJCAS), and an associate editor of the Conference Editorial Board of IEEE Control Systems Society.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guan, W., Yang, G. Adaptive fault-tolerant control of linear time-invariant systems in the presence of actuator saturation. J. Control Theory Appl. 7, 321–327 (2009). https://doi.org/10.1007/s11768-009-8067-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11768-009-8067-5

Keywords

Navigation