Skip to main content
Log in

The effect of IMU inaccuracies on airborne SAR imaging

  • Published:
Journal of Electronics (China)

Abstract

When using motion compensation approaches based on the measurement of motion sensors, the residual uncompensated motion errors due to measurement instrument inaccuracies contribute to phase errors and hence degrade Synthetic Aperture Radar (SAR) images. This paper presents a model to compute the phase error caused by Inertial Measurement Unit (IMU) measurement inaccuracies. By analyzing SAR motion compensation method and the effect of lever arm, this model derives the contribution of each term of IMU inaccuracies towards the residual uncompensated motion errors and provides a method to calculate each order of the residual phase error. According to the model, computed results of the airborne X-band SAR system with POS AV510 accord closely with the actual image quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Fornaro. Trajectory deviations in airborne SAR: Analysis and compensation. IEEE Transactions on Aerospace and Electronic Systems, 35(1999)3, 997–1009.

    Article  Google Scholar 

  2. G. Fornaro, G. Franceschetti, and S. Perna. Motion compensation errors: Effects on the accuracy of airborne SAR images. IEEE Transactions on Aerospace and Electronic Systems, 41(2005)4, 1338–1352.

    Google Scholar 

  3. S. Buckreuss. Motion errors in airborne synthetic aperture radar system. European Transactions on Telecommunications, 2(1991)6, 655–664.

    Article  Google Scholar 

  4. J. J. Mallorqui, I. Rosado, and M. Bara. Interferometric calibration for DEM enhancing and system characterization in single pass SAR interferometry. IEEE Geoscience and Remote Sensing Symposium, Sydney, NSW, Australia, 2001, 404–406.

  5. J. W. Wood. The removal of azimuth distortion in synthetic aperture radar images. International Journal of Remote Sensing, 9(1988)7, 1097–1107.

    Article  Google Scholar 

  6. S. Werness, W. Carrara, L. Joyce, et al. Moving target imaging algorithm for SAR data. IEEE Transactions on Aerospace and Electronic Systems, 26 (1990)1, 57–67.

    Article  Google Scholar 

  7. D. E. Wahl, P. H. Eichel, D. C. Ghiglia, et al. Phase gradient autofocus-A robust toll for high resolution SAR phase correction. IEEE Transactions on Aerospace and Electronic Systems, 30(1994)3, 827–835.

    Article  Google Scholar 

  8. J. Moreira. A new method of aircraft motion error extraction from radar raw data for real time motion compensation. IEEE Transactions on Geoscience and Remote Sensing, 28(1990)4, 620–626.

    Article  MathSciNet  Google Scholar 

  9. T. Isernia, V. Pascazio, R. Pierri, et al. Synthetic aperture radar imaging from phase-corrupted data. IEE Proceedings-Radar, Sonar, Navigation, Aug. 1996, 268–274.

  10. D. J. Difilippo, G. E. Haslam, and W. S. Widnall. Evaluation of a Kalman filter for SAR motion compensation. IEEE Position Location and Navigation Symposium, Orlando, FL, USA, Nov. 29–Dec 2. 1988, 259–268.

  11. R. M. Rogers. Applied Mathematics in Integrated Navigation Systems. USA, American Institute of Aeronautics and Astronautics, 2003, 73–88.

    Google Scholar 

  12. S. Nassar, K. P. Achwarz, and N. Elsheimy. Modeling inertial sensor errors using autoregressive models. Navigation, 51(2004)24, 259–268.

    Google Scholar 

  13. O. Salychev. Applied Inertial Navigation: Problems and Solutions. Moscow, Russia, Bauman MSTU Press, 2004, 94–111.

    Google Scholar 

  14. Guoqiang Xu and Xiuyun Meng. The MEMS IMU error modeling analysis using support vector machines. Second International Symposium on Knowledge Acquisition and Modeling, Wuhan, China, Nov. 30–Dec. 1, 2009, 335–337.

  15. A. Moreira and Y. H. Huang. Airborne SAR processing of highly squinted data using a chirp scaling approach with integrated motion compensation. IEEE Transactions on Geoscience and Remote Sensing, 32(1994)5, 1029–1040.

    Article  Google Scholar 

  16. D. R. Stevens, I. G. Cumming, and A. L. Gray. Options for airborne interferometric SAR motion compensation. IEEE Transactions on Geoscience and Remote Sensing, 33(1995)2, 409–420.

    Article  Google Scholar 

  17. Wei Lideng, Xiang Maosheng, and Wu Yirong. POS data using for motion compensation of airborne In-SAR. Remote Sensing Technology and Appllcation, 22(2007)2, 188–194 (in Chinese). 韦立登, 向茂生, 吴一戎. POS数据在机载干涉SAR运 动补偿中的应用. 遥感技术与应用, 22(2007)2, 188–194.

    Google Scholar 

  18. I. G. Cumming and F. H. Wong. Digital Processing of Synthetic Aperture Radar: Algorithms and Implementation. Beijing, China, Publishing House of Electronics Industry, 2007, 64–67 (in Chinese). I. G. Cumming and F. H. Wong. 合成孔径雷达成像-算法与实现. 北京, 中国, 电子工业出版社, 2007, 64–67.

    Google Scholar 

  19. Guo Zhi, Ding Chibiao, Fang Jiancheng, et al. A motion compensation system for high resolution airborne synthetic aperture radar. Journal of Electronics & Information Technology, 26(2004)2, 174–180 (in Chinese). 郭智, 丁赤飙, 房建成, 等. 一种高分辨率机载SAR的 运动补偿方案. 电子与信息学报, 26(2004)2, 174–180.

    Google Scholar 

  20. S. Buckreuss. Motion compensation for airborne SAR based on inertial data, RDM and GPS. IEEE Geoscience and Remote Sensing Symposium, Pasadena, CA, USA, Aug. 1994, 1971–1973.

  21. M. F. Abdel-Hafez. On the GPS/IMU sensors’ noise estimation for enhanced navigation integrity. Mathematics and Computers in Simulation, (2010). DOI: 10.1016/j.matcom.2010.03.005.

  22. H. S. Ahn and C. H. Won. DGPS/IMU integration-based geolocation system: Airborne experimental test results. Aerospace Science and Technology, 13(2009), 316–324.

    Article  Google Scholar 

  23. M. Bara, J. Monne, and A. Broquetas. Navigation systems requirements for airborne interferometric SAR platforms. IEEE Geoscience and Remote Sensing Symposium, Hamburg, Germany, 1999, 2158–2160.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongfei Mao.

Additional information

Supported by the National Basic Research Program (973) of China (No. 2009CB724003) and the National High-Tech Research and Development Program (863) of China (No. 2007AA120302).

Communication author: Mao Yongfei, born in 1983, male, Ph.D. candidate.

About this article

Cite this article

Mao, Y., Xiang, M., Wei, L. et al. The effect of IMU inaccuracies on airborne SAR imaging. J. Electron.(China) 28, 409–418 (2011). https://doi.org/10.1007/s11767-012-0617-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11767-012-0617-1

Key words

CLC index

Navigation