Skip to main content
Log in

A reduced-order extrapolation algorithm based on CNLSMFE formulation and POD technique for two-dimensional Sobolev equations

  • Published:
Applied Mathematics-A Journal of Chinese Universities Aims and scope Submit manuscript

Abstract

A reduced-order extrapolation algorithm based on Crank-Nicolson least-squares mixed finite element (CNLSMFE) formulation and proper orthogonal decomposition (POD) technique for two-dimensional (2D) Sobolev equations is established. The error estimates of the reduced-order CNLSMFE solutions and the implementation for the reduced-order extrapolation algorithm are provided. A numerical example is used to show that the results of numerical computations are consistent with theoretical conclusions. Moreover, it is shown that the reduced-order extrapolation algorithm is feasible and efficient for seeking numerical solutions to 2D Sobolev equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R A Adams. Sobolev Spaces, Academic Press, New York, 1975.

    MATH  Google Scholar 

  2. G I Barenblett, I P Zheltov, I N Kochian. Basic concepts in the theory of homogeneous liquids in fissured rocks, J Appl Math Mech, 1990, 24(5): 1286–1303.

    Article  Google Scholar 

  3. F Brezzi, M Fortin. Mixed and Hybrid Finite Element Methods, Springer-Verlag, New York, 1991.

    Book  MATH  Google Scholar 

  4. J Du, J Zhu, Z D Luo, I M Navon. An optimizing finite difference scheme based on proper orthogonal decomposition for CVD equations, Internat J Numer Methods Biomed Engrg, 2011, 27(1): 78–94.

    Article  MATH  MathSciNet  Google Scholar 

  5. R E Ewing. Time-stepping Galerkin methods for nonlinear Sobolev partial differential equations, SIAM J Numer Anal, 1978, 15(1): 1125–1150.

    Article  MATH  MathSciNet  Google Scholar 

  6. K Fukunaga. Introduction to Statistical Recognition, Academic Press, New York, 1990.

    MATH  Google Scholar 

  7. F Z Gao, H X Rui. Two spliting least-squares mixed finite element method for linear Sobolev equations, Math Numer Sin, 2008, 30(3): 269–282.

    MATH  MathSciNet  Google Scholar 

  8. P Holmes, J L Lumley, G Berkooz. Turbulence, Coherent Structures, Dynamical Systems and Symmetry, Cambridge University Press, Cambridge, 1996.

    Book  MATH  Google Scholar 

  9. I T Jolliffe. Principal Component Analysis, Springer-Verlag, Berlin, 2002.

    MATH  Google Scholar 

  10. K Kunisch, S Volkwein. Galerkin proper orthogonal decomposition methods for parabolic problems, Numer Math, 2001, 90: 117–148.

    Article  MATH  MathSciNet  Google Scholar 

  11. Z D Luo. Mixed Finite Element Methods and Applications, Chinese Science Press, Beijing, 2006.

    Google Scholar 

  12. Z D Luo, J Chen, I M Navon, X Z Yang. Mixed finite element formulation and error estimates based on proper orthogonal decomposition for the non-stationary Navier-Stokes equations, SIAM J Numer Anal, 2008, 47(1): 1–19.

    Article  MATH  MathSciNet  Google Scholar 

  13. Z D Luo, Z H Xie, J Chen. A reduced MFE formulation based on POD for the non-stationary conduction-convection problems, Acta Math Sci, 2011, 31(5): 1765–1785.

    Article  MATH  MathSciNet  Google Scholar 

  14. Z D Luo, Y J Zhou, X Z Yang. A reduced finite element formulation based on proper orthogonal decomposition for Burgers equation, Appl Numer Math, 2009, 59(8): 1933–1946.

    Article  MATH  MathSciNet  Google Scholar 

  15. Z D Luo, J Zhu, R W Wang, I M Navon. Proper orthogonal decomposition approach and error estimation of mixed finite element methods for the tropical Pacific Ocean reduced gravity model, Comput Methods Appl Mech Engrg, 2007, 196(41–44): 4184–4195.

    MATH  MathSciNet  Google Scholar 

  16. W Rudin. Functional and Analysis (2nd Ed), McGraw-Hill Companies, 1973.

    Google Scholar 

  17. D M Shi. On the initial boundary value problem of nonlinear the equation of the moisture in soil, Acta Math Appl Sin, 1990, 13(1): 33–40.

    Google Scholar 

  18. T W Ting. A cooling process according to two-temperature theory of heat conduction, J Math Anal Appl, 1974, 45(1): 23–31.

    Article  MATH  MathSciNet  Google Scholar 

  19. S Zhang. Least-squares mixed finite element method for Sobolev equation, Chinese J Engrg Math, 2009, 26(4): 749–752.

    MATH  Google Scholar 

  20. J Zhu. The finite element methods for nonlinear Sobolev equation, Northeast Math J, 1989, 5(2): 179–196.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen-dong Luo.

Additional information

Supported by the National Natural Science Foundation of China (11271127) and Science Research Project of Guizhou Province Education Department (QJHKYZ[2013]207).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Teng, F. & Luo, Zd. A reduced-order extrapolation algorithm based on CNLSMFE formulation and POD technique for two-dimensional Sobolev equations. Appl. Math. J. Chin. Univ. 29, 171–182 (2014). https://doi.org/10.1007/s11766-014-3059-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11766-014-3059-8

MR Subject Classification

Keywords

Navigation