Skip to main content
Log in

On the optimal harvesting of size-structured population dynamics

  • Published:
Applied Mathematics-A Journal of Chinese Universities Aims and scope Submit manuscript

Abstract

This work is concerned with a kind of optimal control problem for a size-structured biological population model. Well-posedness of the state system and an adjoint system are proved by means of Banach’s fixed point theorem. Existence and uniqueness of optimal control are shown by functional analytical approach. Optimality conditions describing the optimal strategy are established via tangent and normal cones technique. The results are of the first ones for this novel structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S Anitâ. Analysis and Control of Age-Dependent Population Dynamics, Kluwer, Dordrecht, 2000.

    Book  MATH  Google Scholar 

  2. V Barbu, M Iannelli. Optimal control of population dynamics, J Optim Theory Appl, 1999, 102: 1–14.

    Article  MathSciNet  MATH  Google Scholar 

  3. V Barbu, M Iannelli, M Martcheva. On the controllability of the Lotka-McKendrick model of population dynamics, J Math Anal Appl, 2001, 253: 142–165.

    Article  MathSciNet  MATH  Google Scholar 

  4. F Brauer. Constant-rate harvesting of age-structured populations, SIAM J Math Anal, 1983, 14: 947–961.

    Article  MathSciNet  MATH  Google Scholar 

  5. B Ebenman, L Persson. Size-Structured Populations: Ecology and Evolution, Springer-Verlag, Berlin/Heidelberg/New York/London, 1988.

    Book  MATH  Google Scholar 

  6. J Z Farkas, T Hagen. Stability and regularity results for a size-structured population model, J Math Anal Appl, 2007, 328: 119–136.

    Article  MathSciNet  MATH  Google Scholar 

  7. K P Hadeler, J Müller. Optimal harvesting and optimal vaccination, Math Biosci, 2007, 206: 249–272.

    Article  MathSciNet  MATH  Google Scholar 

  8. Z R He. Optimal birth control of age-dependent competitive species, J Math Anal Appl, 2004, 296: 286–301.

    Article  MathSciNet  MATH  Google Scholar 

  9. Z R He. Optimal birth control of age-dependent competitive species II. Free horizon problems, J Math Anal Appl, 2005, 305: 11–28.

    Article  MathSciNet  MATH  Google Scholar 

  10. Z R He. Optimal harvesting of two competing species with age dependence, Nonlinear Anal RWA 2006, 7: 769–788.

    Article  MATH  Google Scholar 

  11. Z R He, J S Cheng, C G Zhang. Optimal birth control of age-dependent competitive species III. Overtaking problem, J Math Anal Appl, 2008, 337: 21–35.

    Article  MathSciNet  MATH  Google Scholar 

  12. Z RHe, S H Hong, C G Zhang. Double control problems of age-distributed population dynamics, Nonlinear Anal RWA, 2009, 10: 3112–3121.

    Article  Google Scholar 

  13. Z R He, H T Wang. Control problems of an age-dependent predator-prey system, Appl Math J Chinese Univ Ser B, 2009, 24(3): 253–262.

    Article  MathSciNet  MATH  Google Scholar 

  14. N Hritonenko, Y Yatsenko. Optimization of harvesting age in an integral age-dependent model of population dynamics, Math Biosci 2005, 195: 154–167.

    Article  MathSciNet  MATH  Google Scholar 

  15. N Hritonenko, Y Yatsenko, R U Goetz, A Xabadia. Maximum principle for a size-structured model of forest and carbon sequestration management, Appl Math Lett, 2008, 21: 1090–1094.

    Article  MathSciNet  MATH  Google Scholar 

  16. M Iannelli. Mathematical Theory of Age-Structured Population Dynamics, Giardini Editori, Pisa, 1994.

    Google Scholar 

  17. N Kato. Positive global solutions for a general model of size-dependent population dynamics, Abstr Appl Anal, 2004, 5: 191–206.

    Article  Google Scholar 

  18. Z Luo. Optimal harvesting problem for an age-dependent n-dimensional food chain diffusion model, Appl Math Comput, 2007, 186: 1742–1752.

    Article  MathSciNet  MATH  Google Scholar 

  19. N G Medhin. Optimal harvesting in age-structured populations, J Optim Theory Appl, 1992, 74: 413–423.

    Article  MathSciNet  MATH  Google Scholar 

  20. J A J Metz, O Diekmann. The Dynamics of Physiologically Structured Populations, Springer, Berlin, 1986.

    MATH  Google Scholar 

  21. L F Murphy. Maximum sustainable yield of a nonlinear population model with continuous age structure, Math Biosci, 1991, 104: 259–270.

    Article  MathSciNet  MATH  Google Scholar 

  22. L F Murphy, S J Smith. Optimal harvesting of an age-structured population, J Math Biol, 1990, 29: 77–90.

    Article  MathSciNet  MATH  Google Scholar 

  23. S Tucker, S Zimmerman. A nonlinear model of population dynamics containing an arbitrary number of continuous structure variables, SIAM J Appl Math, 1988, 48: 549–591.

    Article  MathSciNet  MATH  Google Scholar 

  24. G F Webb. Theory of Nonlinear Age-Dependent Population Dynamics, Marcel Dekker, New York, 1985.

    MATH  Google Scholar 

  25. G F Webb. Population models structured by age, size, and spatial position, Lecture Notes in Math, 2008, 1-49.

  26. C Zhao, P Zhao, M S Wang. Optimal harvesting for nonlinear age-dependent population dynamics, Math Comput Modelling, 2006, 43: 310–319.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Liu.

Additional information

Supported by the ZPNSFC(LY12A01023) and the National Natural Science Foundation of China (11271104, 11061017).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Cheng, Xl. & He, Zr. On the optimal harvesting of size-structured population dynamics. Appl. Math. J. Chin. Univ. 28, 173–186 (2013). https://doi.org/10.1007/s11766-013-2965-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11766-013-2965-5

MR Subject Classification

Keywords

Navigation