Skip to main content
Log in

Global positive periodic solutions of age-dependent competing systems

  • Published:
Applied Mathematics-A Journal of Chinese Universities Aims and scope Submit manuscript

Abstract

This paper is to investigate positive periodic solutions of a biological system composed of two competing species. The existence and uniqueness of nonnegative solutions to the model for a set of given vital rates and initial distribution are treated and the contractive property of the solutions explored. Based on these results, some simple conditions for the global existence of positive periodic orbits are established by means of Horn’s asymptotic fixed point theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M A Abdou, J H He, New periodic solutions for nonlinear evolution equations using Exp-function method, Chaos Solitons Fractals, 2007, 34(5): 1421–1429.

    Article  MATH  MathSciNet  Google Scholar 

  2. S Aniţa, Analysis and Control of Age-Dependent Population Dynamics, Kluwer Academic Publishers, 2000.

  3. M Berger, Nonlinearity and Functional Analysis, Academic Press, 1977.

  4. S Busenberg, M Iannelli, Separable models in age-dependent population dynamics, J Math Biol, 1985, 22: 145–173.

    Article  MATH  MathSciNet  Google Scholar 

  5. W L Chan, B Z Guo, Global behavior of age-dependent logistic population models, J Math Biol, 1990, 28: 225–235.

    Article  MATH  MathSciNet  Google Scholar 

  6. L Chen, Z Liu, Periodic solution of a two-species competitive system with toxicant and birth pulse, Chaos Solitons Fractals, 2007, 32(5): 1703–1712.

    Article  MATH  MathSciNet  Google Scholar 

  7. J S Cheng, Z R He, C G Zhang, Optimal birth control of age-dependent competitive species III: Overtaking problem, J Math Anal Appl, 2008, 337: 21–35.

    Article  MATH  MathSciNet  Google Scholar 

  8. K M Crowe, Nonlinear ergodic theorems and symmetric versus asymmetric competition, In: Structured-Population Models in Marine, Terrestrial, and Freshwater Systems, International Thompson Publishing, 1997, 515–532.

  9. K R Fister, S Lenhart, Optimal control of a competitive system with age-structure, J Math Anal Appl, 2004, 291: 526–537.

    Article  MATH  MathSciNet  Google Scholar 

  10. K Gopalsamy, Age-specific coexistence in two-species competition, Math Biosci, 1982, 61: 101–122.

    Article  MATH  MathSciNet  Google Scholar 

  11. M E Gurtin, R C MacCamy, Some simple models for non-linear age-dependent population dynamics, Math Biosci, 1979, 43: 199–211.

    Article  MATH  MathSciNet  Google Scholar 

  12. Z R He, Optimal birth control of age-dependent competitive species, J Math Anal Appl, 2004, 296: 286–301.

    Article  MATH  MathSciNet  Google Scholar 

  13. Z R He, Optimal birth control of age-dependent competitive species II: Free horizon problems, J Math Anal Appl, 2005, 305: 11–28.

    Article  MATH  MathSciNet  Google Scholar 

  14. Z R He, Optimal harvesting of two competing species with age dependence, Nonlinear Anal: RWA, 2006, 7: 769–788.

    Article  MATH  Google Scholar 

  15. Y Kuang, Delay Differential Equations with Applications in Population Dynamics, Academic Press, 1993.

  16. M Kubo, M Langlais, Periodic solutions for nonlinear population dynamics models with age-dependence and spatial structure, J Differential Equations, 1994, 109: 274–294.

    Article  MATH  MathSciNet  Google Scholar 

  17. D S Levine, Bifurcating periodic solutions for a class of age-structured predator-prey systems, Bull Math Bio, 1983, 45(6): 901–915.

    MATH  Google Scholar 

  18. W E Neill, Community responses to experimental nutrient perturbations in Oligotrophic Lakes: The importance of bottlenecks in size-structured populations, In: Size-Structured Populations: Ecology and Evolution, Springer-Verlag, 1988, 236–255.

  19. J H Swart, On the Gurtin-MacCamy conjecture concerning the stability of a simple nonlinear age-dependent population model, Math Biosci, 1987, 85: 127–143.

    Article  MATH  MathSciNet  Google Scholar 

  20. J H Swart, Hopf bifurcation and the stability of nonlinear age-dependent population models, Comput Math Appl, 1988, 15: 555–564.

    Article  MATH  MathSciNet  Google Scholar 

  21. K E Swick, Periodic solutions of a nonlinear age-dependent model of single species population dynamics, SIAM J Math Anal, 1980, 11(5): 901–910.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ze-rong He.

Additional information

Supported by the National Natural Science Foundation of China (10771048, 11061017).

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, Zr., Liu, Ll. & Luo, Zx. Global positive periodic solutions of age-dependent competing systems. Appl. Math. J. Chin. Univ. 26, 38–46 (2011). https://doi.org/10.1007/s11766-011-2503-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11766-011-2503-2

MR Subject Classification

Keywords

Navigation