Skip to main content
Log in

SVM classification:Its contents and challenges

  • Published:
Applied Mathematics-A Journal of Chinese Universities Aims and scope Submit manuscript

Abstract

SVM (support vector machines) have become an increasingly popular tool for machine learning tasks involving classification, regression or novelty detection. In particular, they exhibit good generalization performance on many real issues and the approach is properly motivated theoretically. There are relatively a few free parameters to adjust and the architecture of the learning machine does not need to be found by experimentation. In this paper, survey of the key contents on this subject, focusing on the most well-known models based on kernel substitution, namely SVM, as well as the activated fields at present and the development tendency, is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boser, B. E.,Guyon, I. M.,Vapnik, V. N.,A training algorithm for optimal margin classifiers, Proc. Fifth Ann. Workshop Computational Learning Theory,New York:ACM Press, 1992.

    Google Scholar 

  2. Vapnik, V.,The Nature of Statistical Learning Theory,New York:Springer-Verlag,1995.

    MATH  Google Scholar 

  3. Schölkopf, B., Smola, A., Müller, K. R., Nonlinear component analysis as a kernel eigenvalue problem,Neural Computation,1998,10:1299–1319.

    Article  Google Scholar 

  4. Schölkopf, B.,Burges, C. J. C.,Smola, A. J.,Advances in Kernel Methods-Support Vector Learning, United Kingdom:Cambridge University Press,1998.

    MATH  Google Scholar 

  5. Schölkopf, B.,Support vector regression with automatic accuracy control, Proc. Eighth Int. Conf. Artificial Neural Networks, Perspectives in Neural Computing, Berlin:Springer-Verlag,1998.

    Google Scholar 

  6. Burges,C. J. C.,Simplified Support Vector Decision Rules,Proc. 13th Int Conf. Machine Learning, Morgan Kaufmann,San Francisco,1996.

  7. Smola,A.,Schölkopf,B.,From regularization operators to support vector kernels,In:M. Jordan,M. Kearns,and S. Solla,eds.,Advances in Neural Information Processing System,MIT Press,1998.

  8. Girosi, F.,An equivalence between sparse approximation and support vector machines,AI memo No. 1606,MIT,Cambridge,Mass, 1997.

    Google Scholar 

  9. Weston,J.,Density Estimation Using Support Vector Machines, Tech. Report CSD-RT-97-23,Royal Holloway Univ. of London, 1997.

  10. Chang, C. C.,Hsu, C. W.,Lin, C. J., The analysis of decomposition methods for support vector machines,IEEE Trans. Neural networks,2000,11(4):1003–1008.

    Article  Google Scholar 

  11. Chang, C. C.,Lin, C. J., Training support vector classifiers: Theory and algorithms, Neural Computation,2001,13(9):2119–2147.

    Article  MATH  Google Scholar 

  12. Chang, C. C., Lin, C. J., Training suport vector regression: Theory and algorithms. Neural Computation,2002,26:23–26.

    Google Scholar 

  13. Cortes, C.,Vapnik, V.,Support-vector network,Machine Learning,1995,20:273–297.

    MATH  Google Scholar 

  14. Crisp, D. J.,Burges, C. J.,A geometric interpretation of SVM classifiers, In: S. Solla, T. Leen, and Muller,K. R. Eds., Advances in Neural Information Processing Systems,2000,12:126–245.

    Google Scholar 

  15. Friedman,J.,Another aproach to polychotomous classification, Technical Report,Department of Statistics,Stanford University Available,1996.

  16. Hsu, C. W.,Lin C. J., A comparison of methods for multi-class support vector machines, IEEE Transactions on Networks,2002,46:126–135.

    Google Scholar 

  17. Hsu, C. W., Lin C. J., A simple decomposition method for support vector machines, Machine Learning,2002,46:291–314.

    Article  MATH  Google Scholar 

  18. Joachims, T.,Making large-scale SVM learning practical,Machine Learning,1998,23:234–242.

    Google Scholar 

  19. Burges, T.,Smola, A. J. (Eds.), Advances in Kernel Methods-Support Vector Learning,MA:MIT Press,1993.

    Google Scholar 

  20. Keerthi, S. S.,Gilbert, E. G.,Convergence of a generalized SMO algorithm for SVM classifier design, Machine Learning,2002,46:351–360.

    Article  MATH  Google Scholar 

  21. Keerthi, S. S.,Shevade, C.,Bhattacharyya, A. S.,et al.,Improvements to Platt’s SMO algorithm for SVM classifier design,Neural Computation,2001,13:637–649.

    Article  MATH  Google Scholar 

  22. Knerr, S., Personnaz, L., Dreyfus, G., Single-layer learning revisited: a stepwise procedure for building and training a neural network, In: J. Fogelman, ed., Neurocompution: Algorithms, Architectures and Application,New York:Springer-Verlag,1996.

    Google Scholar 

  23. Krer, U.,Pairwise classification and support vector machines,In:Schölkopf, B. C.,Burges, J. C. and Smola, A.J., eds., Advances in Kernel Methods-Support Vector Learning, MA:MIT Press, 1999.

    Google Scholar 

  24. Drucker, H., Wu, D., Vapnik, V.N., Support vector machines for span categorization, IEEE Trans. Neural Networks, 1999, 10: 1048–1054.

    Article  Google Scholar 

  25. Mattera, D., Haykin, S., Support vector machines for dynamic reconstruction of a chaotic system, In: Advances in Kernel Methods-Support Vector Learning, MA:MIT Press, 1999.

    Google Scholar 

  26. Brown, M. P., Grundy, W. N., Lin, C. J., Knowledge-based analysis of microarray gene expression data using support vector machines, Proc. National Academy Science, 2000, 97, (1):262–267.

    Article  Google Scholar 

  27. Furey, T., Cristianini, N., Support vector machine classification and validation of cancer tissue samples using microarray expression data, Bioinformatics, 2000, 16:906–914.

    Article  Google Scholar 

  28. Zien, A., Engineering support vector machine kernels that recognize translation initiation sites in DNA, Bioinformatics, 2000, 16:799–807.

    Article  Google Scholar 

  29. Hsu, C. W., Lin, C. J., A simple decomposition method for support vector machines, Machine Learning, 1999, 46:291–314.

    Article  Google Scholar 

  30. Haussler, D., Convolution kernels on discrete structures, UC Santata Cruzzy, Technical Report, No. UCSC-CRL-99-10, 1999.

  31. Watkins, C., Dynamic alignment kernels, In: A. J. Smola, P. L. Bartlett, B. Schölkopf, et al., eds., Advances in Large Margin Classifiers, MA:MIT Press, 2000.

    Google Scholar 

  32. Burges, C.J., A tutorial way on support vector machines for pattern recognition, Knowledge Discovery and Data Mining, 1998, 2(2):121–167.

    Article  Google Scholar 

  33. Smola, A., Schölkopf, B., A tutorial on support vector regression, Statistics and Computing, 2001, 12:212–226.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by the National 863 Plan Foundation of China (2002AA412010).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yue, S., Li, P. & Hao, P. SVM classification:Its contents and challenges. Appl. Math. Chin. Univ. 18, 332–342 (2003). https://doi.org/10.1007/s11766-003-0059-5

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11766-003-0059-5

MR Subject Classification

Keywords

Navigation