Skip to main content
Log in

Cognitive functioning in thyroid cancer survivors: a systematic review and meta-analysis

  • Review
  • Published:
Journal of Cancer Survivorship Aims and scope Submit manuscript

Abstract

Background

Some thyroid cancer (TC) survivors experience cognitive symptoms.

Purpose

The purpose of this study is to perform a systematic literature review and meta-analysis comparing cognitive performance in TC survivors to controls.

Methods

We performed a seven-database electronic search and hand-search. We performed duplicate independent reviews and data abstraction. Random effects meta-analyses reported standardized mean differences (SMDs) with 95% confidence intervals (CIs), where a negative value implies worse performance in the TC group.

Results

We reviewed 1174 unique citations and 10 full-text papers. We included seven studies of 241 treated TC survivors and 273 controls. Cognitive function was statistically significantly worse in TC survivors in the following domains: Attention and Concentration (Digit Span Forwards) SMD − 0.37 (95% CI − 0.62, − 0.13, p = 0.003, four studies), Speed of Processing (Trail Making A) SMD − 0.36 (95% CI − 0.66, − 0.05, p = 0.022, four studies), and Language (Controlled Oral Word Association [COWAT]-Categories) SMD − 0.97 (95% − 1.31, − 0.64, p < 0.001, two studies). Executive Function results varied: COWAT-Letters SMD − 0.60 (95% CI − 0.94, − 0.27, p < 0.001, two studies), Digit Span Backwards SMD − 0.40 (95% CI − 0.64, − 0.15, p = 0.002, four studies), and Trail Making B test SMD − 0.20 (95% CI − 0.51, 0.10, p = 0.191, four studies). Statistical heterogeneity limited the COWAT-Categories and Digit Span Backwards meta-analyses.

Conclusions

Cognitive function was worse in TC survivors in multiple domains. Limitations included few studies, potential confounding, and lack of prospective data.

Implications for Cancer Survivors

TC survivors may experience impairments in cognitive function and should report cognitive concerns to healthcare practitioners.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. La Vecchia C, Malvezzi M, Bosetti C, Garavello W, Bertuccio P, Levi F, et al. Thyroid cancer mortality and incidence: a global overview. Int J Cancer. 2015;136(9):2187–95.

    Article  CAS  PubMed  Google Scholar 

  2. International Agency for Research on Cancer 2017 GLOBOCAN 2012: Estimated cancer incidence, mortality, and prevalence worldwide in 2012. Available at http://globocan.iarc.fr/Pages/fact_sheets_population.aspx Accessed July 18, 2018.

  3. Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE, et al. for the American Thyroid Association 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer. Thyroid. 2016;26:1–133.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Rosenthal K. When cancer muddles the mind. 2009 New York Times. Available at: https://well.blogs.nytimes.com/2009/11/17/when-cancer-muddles-the-mind/ Accessed July 18, 2018.

  5. Joly F, Giffard B, Rigal O, De Ruiter MB, Small BJ, Dubois M, et al. Impact of cancer and its treatments on cognitive function: advances in research from the Paris International Cognition and Cancer Task Force Symposium and Update since 2012. J Pain Symptom Manag. 2015;50(6):830–41.

    Article  Google Scholar 

  6. Ahles TA, Root JC. Cognitive effects of cancer and cancer treatments. Annu Rev Clin Psychol. 2018;14:425–51.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bernstein LJ, McCreath GA, Komeylian Z, Rich JB. Cognitive impairment in breast cancer survivors treated with chemotherapy depends on control group type and cognitive domains assessed: a multilevel meta-analysis. Neurosci Biobehav Rev. 2017;83:417–28.

    Article  PubMed  Google Scholar 

  8. Hayden JA, van der Windt DA, Cartwright JL, Côté P, Bombardier C. Assessing bias in studies of prognostic factors. Ann Intern Med. 2013;158(4):280–6.

    Article  PubMed  Google Scholar 

  9. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med. 2009;151:264–9.

    Article  PubMed  Google Scholar 

  10. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;73:177–88.

    Article  Google Scholar 

  11. Cochrane WG. The combination of estimates from different experiments. Biometrics. 1954;101:101–29.

    Article  Google Scholar 

  12. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;3277414:557–60.

    Article  Google Scholar 

  13. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;3157109:629–34.

    Article  Google Scholar 

  14. Burmeister LA, Ganguli M, Dodge HH, Toczek T, DeKosky ST, Nebes RD. Hypothyroidism and cognition: preliminary evidence for a specific defect in memory. Thyroid. 2001;11(12):1177–85.

    Article  CAS  PubMed  Google Scholar 

  15. Samuels MH, Kolobova I, Smeraglio A, Peters D, Janowsky JS, Schuff KG. The effects of levothyroxine replacement or suppressive therapy on health status, mood, and cognition. J Clin Endocrinol Metab. 2014;99(3):843–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Samuels MH, Kolobova I, Niederhausen M, Janowsky JS, Schuff KG. Effects of altering levothyroxine (L-T4) doses on quality of life, mood, and cognition in L-T4 treated subjects. J Clin Endocrinol Metab. 2018;103(5):1997–2008.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Botella-Carretero JI, Galán JM, Caballero C, Sancho J, Escobar-Morreale HF. Quality of life and psychometric functionality in patients with differentiated thyroid carcinoma. Endocr Relat Cancer. 2003;10(4):601–10.

    Article  CAS  PubMed  Google Scholar 

  18. Bunevicius R, Prange AJ. Mental improvement after replacement therapy with thyroxine plus triiodothyronine: relationship to cause of hypothyroidism. Int J Neuropsychopharmacol. 2000;3(2):167–74.

    Article  CAS  PubMed  Google Scholar 

  19. Constant EL, Adam S, Seron X, Bruyer R, Seghers A, Daumerie C. Anxiety and depression, attention, and executive functions in hypothyroidism. J Int Neuropsychol Soc. 2005;11(5):535–44.

    Article  CAS  PubMed  Google Scholar 

  20. Husson O, Haak HR, Buffart LM, Nieuwlaat WA, Oranje WA, Mols F, et al. Health-related quality of life and disease specific symptoms in long-term thyroid cancer survivors: a study from the population-based PROFILES registry. Acta Oncol. 2013;52(2):249–58.

    Article  PubMed  Google Scholar 

  21. Jaracz J, Kucharska A, Rajewska-Rager A, Lacka K. Cognitive functions and mood during chronic thyrotropin-suppressive therapy with L-thyroxine in patients with differentiated thyroid carcinoma. J Endocrinol Investig. 2012;35(8):760–5.

    CAS  Google Scholar 

  22. Jung MS, Visovatti M. Post-treatment cognitive dysfunction in women treated with thyroidectomy for papillary thyroid carcinoma. Support Care Cancer. 2017;25(3):915–23.

    Article  PubMed  Google Scholar 

  23. Moon JH, Ahn S, Seo J, Han JW, Kim KM, Choi SH, et al. The effect of long-term thyroid-stimulating hormone suppressive therapy on the cognitive function of elderly patients with differentiated thyroid carcinoma. J Clin Endocrinol Metab. 2014;99(10):3782–9.

    Article  CAS  PubMed  Google Scholar 

  24. Li M, Caeyenberghs K. Longitudinal assessment of chemotherapy-induced changes in brain and cognitive functioning: a systematic review. Neurosci Biobehav Rev. 2018;92:304–17. https://doi.org/10.1016/j.neubiorev.2018.05.019.

    Article  PubMed  Google Scholar 

  25. Pierson C, Waite E, Pyykkonen B. A meta-analysis of the neuropsychological effects of chemotherapy in the treatment of childhood cancer. Pediatr Blood Cancer. 2016;63(11):1998–2003.

    Article  PubMed  Google Scholar 

  26. Edelstein K, D’agostino N, Bernstein LJ, Nathan PC, Greenberg ML, Hodgson DC, et al. Long-term neurocognitive outcomes in young adult survivors of childhood acute lymphoblastic leukemia. J Pediatr Hematol Oncol. 2011;33(6):450–8.

    Article  PubMed  Google Scholar 

  27. Zer A, Pond GR, Razak ARA, Tirona K, Gan HK, Chen EX, et al. Association of neurocognitive deficits with radiotherapy or chemoradiotherapy for patients with head and neck cancer. JAMA Otolaryngol Head Neck Surg. 2018;144:71–9.

    PubMed  Google Scholar 

  28. Harrison RA, Wefel JS. Neurocognitive function in adult cancer patients. Neurol Clin. 2018;36(3):653–74.

    Article  PubMed  Google Scholar 

  29. Lee PE, Tierney MC, Wu W, Pritchard KI, Rochon PA. Endocrine treatment-associated cognitive impairment in breast cancer survivors: evidence from published studies. Breast Cancer Res Treat. 2016;158(3):407–20.

    Article  CAS  PubMed  Google Scholar 

  30. Mandelblatt JS, Small BJ, Luta G, Hurria A, Jim H, McDonald BC, et al. Cancer-related cognitive outcomes among older breast cancer survivors in the thinking and living with cancer study. J Clin Oncol. 2018;36(32):3211–22. https://doi.org/10.1200/JCO.18.00140.

    Article  CAS  PubMed Central  Google Scholar 

  31. Liao KF, Lin CL, Lai SW. Nationwide case-control study examining the association between tamoxifen use and Alzheimer’s disease in aged women with breast cancer in Taiwan. Front Pharmacol. 2017;8:612.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Sun LM, Chen HJ, Liang JA, Kao CH. Long-term use of tamoxifen reduces the risk of dementia: a nationwide population-based cohort study. QJM. 2016;109(2):103–9.

    Article  CAS  PubMed  Google Scholar 

  33. Sun M, Cole AP, Hanna N, Mucci LA, Berry DL, Basaria S, et al. Cognitive impairment in men with prostate cancer treated with androgen deprivation therapy: a systematic review and meta-analysis. J Urol. 2018;199(6):1417–25.

    Article  PubMed  Google Scholar 

  34. Morote J, Tabernero ÁJ, Álvarez Ossorio JL, Ciria JP, Domínguez-Escrig JL, Vázquez F, et al. ANAMEM Investigator Group. Cognitive function in patients with prostate cancer receiving luteinizing hormone-releasing hormone analogues: a prospective, observational, multicenter study. Int J Radiat Oncol Biol Phys. 2017;98(3):590–4.

    Article  PubMed  Google Scholar 

  35. Tae BS, Jeon BJ, Shin SH, Choi H, Bae JH, Park JY. Correlation of androgen deprivation therapy with cognitive dysfunction in patients with prostate cancer: a nationwide population-based study using the National Health Insurance Service Database. Cancer Res Treat 2018. doi: https://doi.org/10.4143/crt.2018.119.

  36. Deka R, Simpson DR, Bryant AK, Nalawade V, McKay R, Murphy JD, et al. Association of androgen deprivation therapy with dementia in men with prostate cancer who receive definitive radiation therapy. JAMA Oncol. 2018;4:1616. https://doi.org/10.1001/jamaoncol.2018.4423.

    Article  PubMed  PubMed Central  Google Scholar 

  37. McHugh DJ, Root JC, Nelson CJ, Morris MJ. Androgen-deprivation therapy, dementia, and cognitive dysfunction in men with prostate cancer: how much smoke and how much fire? Cancer. 2018;124(7):1326–34.

    Article  PubMed  Google Scholar 

  38. Nead KT, Gaskin G, Chester C, Swisher-McClure S, Leeper NJ, Shah NH. Association between androgen deprivation therapy and risk of dementia. JAMA Oncol. 2017;3:49–55.

    Article  PubMed  Google Scholar 

  39. Kao LT, Lin HC, Chung SD, Huang CY. No increased risk of dementia in patients receiving androgen deprivation therapy for prostate cancer: a 5-year follow-up study. Asian J Androl. 2017;19(4):414–7.

    Article  PubMed  Google Scholar 

  40. Chung S, Lin H, Tsai M, Kao L, Huang C, Chen KC. Androgen deprivation therapy did not increase the risk of Alzheimer’s and Parkinson’s disease in patients with prostate cancer. Andrology. 2016;4:481–5.

    Article  CAS  PubMed  Google Scholar 

  41. Khosrow-Khavar F, Rej S, Yin H, Aprikian A, Azoulay L. Androgen deprivation therapy and the risk of dementia in patients with prostate cancer. J Clin Oncol. 2017;35:201–7.

    Article  PubMed  Google Scholar 

  42. Rieben C, Segna D, da Costa BR, Collet TH, Chaker L, Aubert CE, et al. Subclinical thyroid dysfunction and the risk of cognitive decline: a meta-analysis of prospective cohort studies. J Clin Endocrinol Metab. 2016;101(12):4945–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Aubert CE, Bauer DC, da Costa BR, Feller M, Rieben C, Simonsick EM, et al. The association between subclinical thyroid dysfunction and dementia: The Health, Aging and Body Composition (Health ABC) Study. Clin Endocrinol. 2017;87(5):617–26.

    Article  CAS  Google Scholar 

  44. Szlejf C, Suemoto CK, Santos IS, Lotufo PA, Haueisen Sander Diniz MF, Barreto SM, et al. Thyrotropin level and cognitive performance: baseline results from the ELSA-Brasil study. Psychoneuroendocrinology. 2018;87:152–8.

    Article  CAS  PubMed  Google Scholar 

  45. Peterson SJ, Cappola AR, Castro MR, Dayan CM, Farwell AP, Hennessey JV, et al. An online survey of hypothyroid patients demonstrates prominent dissatisfaction. Thyroid. 2018;28(6):707–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Regalbuto C, Maiorana R, Alagona C, Paola RD, Cianci M, Alagona G, et al. Effects of either LT4 monotherapy or LT4/LT3 combined therapy in patients totally thyroidectomized for thyroid cancer. Thyroid. 2007;17(4):323–31.

    Article  CAS  PubMed  Google Scholar 

  47. Andreotti C, Root JC, Schagen SB, McDonald BC, Saykin AJ, Atkinson TM, et al. Reliable change in neuropsychological assessment of breast cancer survivors. Psychooncology. 2016;25(1):43–50.

    Article  PubMed  Google Scholar 

  48. Edelstein K, Bernstein LJ. Cognitive dysfunction after chemotherapy for breast cancer. J Int Neuropsychol Soc. 2014;20(4):351–6.

    Article  PubMed  Google Scholar 

  49. Higgins JPT, Green S. 2011 Recommendations for testing of funnel plot asymmetry. Cochrane handbook for systematic reviews of interventions. Version 5.1.0 Available at: http://handbook-5-1.cochrane.org/chapter_10/10_4_3_1_recommendations_on_testing_for_funnel_plot_asymmetry.htm Accessed January 31, 2019.

  50. Wefel JS, Vardy J, Ahles T, Schagen SB. International Cognition and Cancer Task Force recommendations to harmonise studies of cognitive function in patients with cancer. Lancet Oncol. 2011;12(7):703–8.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

AMS was supported, in part, by a University of Toronto Department of Medicine Clinician Scientist Merit Award. The authors would like to thank Mrs. Coreen Marino, for assistance in retrieving the full-text papers for review. The authors would also like to thank Drs. Jan Jaracz and Moira A. Visovatti, for kindly responding to our queries about their studies.

Funding

Library service expenses were funded, in part, from a University Health Network Thyroid Cancer Research Fund (private charitable donations to the UHN Foundation).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna M. Sawka.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Table 5 Sample references for cognitive tests included in this review

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saeed, O., Bernstein, L.J., Fazelzad, R. et al. Cognitive functioning in thyroid cancer survivors: a systematic review and meta-analysis. J Cancer Surviv 13, 231–243 (2019). https://doi.org/10.1007/s11764-019-00745-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11764-019-00745-1

Keywords

Navigation