Skip to main content

Advertisement

Log in

Objectively measured physical activity and cognitive functioning in breast cancer survivors

  • Published:
Journal of Cancer Survivorship Aims and scope Submit manuscript

Abstract

Purpose

This study aimed to explore the relationship between objectively measured physical activity and cognitive functioning in breast cancer survivors.

Methods

Participants were 136 postmenopausal breast cancer survivors. Cognitive functioning was assessed using a comprehensive computerized neuropsychological test. Seven-day physical activity was assessed using hip-worn accelerometers. Linear regression models examined associations of minutes per day of physical activity at various intensities on individual cognitive functioning domains. The partially adjusted model controlled for primary confounders (model 1), and subsequent adjustments were made for chemotherapy history (model 2) and body mass index (BMI) (model 3). Interaction and stratified models examined BMI as an effect modifier.

Results

Moderate-to-vigorous physical activity (MVPA) was associated with information processing speed. Specifically, 10 min of MVPA was associated with a 1.35-point higher score (out of 100) on the information processing speed domain in the partially adjusted model and a 1.29-point higher score when chemotherapy was added to the model (both p < 0.05). There was a significant BMI × MVPA interaction (p = 0.051). In models stratified by BMI (<25 vs. ≥25 kg/m2), the favorable association between MVPA and information processing speed was stronger in the subsample of overweight and obese women (p < 0.05) but not statistically significant in the leaner subsample. Light-intensity physical activity was not significantly associated with any of the measured domains of cognitive function.

Conclusions

MVPA may have favorable effects on information processing speed in breast cancer survivors, particularly among overweight or obese women.

Implications for Cancer Survivors

Interventions targeting increased physical activity may enhance aspects of cognitive function among breast cancer survivors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. de Moor JS, Mariotto AB, Parry C, Alfano CM, Padgett L, Kent EE et al. Cancer survivors in the United States: prevalence across the survivorship trajectory and implications for care. Cancer epidemiology, biomarkers & prevention: a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology. 2013;22(4):561–70. doi:10.1158/1055-9965.EPI-12-1356.

  2. Vardy J. Cognitive function in breast cancer survivors. Cancer Treat Res. 2009;151:387–419. doi:10.1007/978-0-387-75115-3_24.

    Article  PubMed  Google Scholar 

  3. Ahles TA, Saykin AJ. Breast cancer chemotherapy-related cognitive dysfunction. Clin Breast Cancer. 2002;3 Suppl 3:S84–90.

    Article  CAS  PubMed  Google Scholar 

  4. Yamada TH, Denburg NL, Beglinger LJ, Schultz SK. Neuropsychological outcomes of older breast cancer survivors: cognitive features ten or more years after chemotherapy. J Neuropsychiatry Clin Neurosci. 2010;22(1):48–54. doi:10.1176/appi.neuropsych.22.1.48.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Scherwath A, Mehnert A, Schleimer B, Schirmer L, Fehlauer F, Kreienberg R, et al. Neuropsychological function in high-risk breast cancer survivors after stem-cell supported high-dose therapy versus standard-dose chemotherapy: evaluation of long-term treatment effects. Ann Oncol Off J Eur Soc Med Oncol ESMO. 2006;17(3):415–23. doi:10.1093/annonc/mdj108.

    Article  CAS  Google Scholar 

  6. Ahles TA, Saykin AJ, Furstenberg CT, Cole B, Mott LA, Skalla K, et al. Neuropsychologic impact of standard-dose systemic chemotherapy in long-term survivors of breast cancer and lymphoma. J Clin Oncol Off J Am Soc Clin Oncol. 2002;20(2):485–93.

    Article  CAS  Google Scholar 

  7. Munir F, Yarker J, McDermott H. Employment and the common cancers: correlates of work ability during or following cancer treatment. Occup Med. 2009;59(6):381–9. doi:10.1093/occmed/kqp088.

    Article  CAS  Google Scholar 

  8. Boykoff N, Moieni M, Subramanian SK. Confronting chemobrain: an in-depth look at survivors’ reports of impact on work, social networks, and health care response. J Cancer Survivorship Res Pract. 2009;3(4):223–32. doi:10.1007/s11764-009-0098-x.

    Article  Google Scholar 

  9. Smith PJ, Blumenthal JA, Hoffman BM, Cooper H, Strauman TA, Welsh-Bohmer K, et al. Aerobic exercise and neurocognitive performance: a meta-analytic review of randomized controlled trials. Psychosom Med. 2010;72(3):239–52. doi:10.1097/PSY.0b013e3181d14633.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Angevaren M, Aufdemkampe G, Verhaar HJ, Aleman A, Vanhees L. Physical activity and enhanced fitness to improve cognitive function in older people without known cognitive impairment. Cochrane Database Syst Rev. 2008;2, CD005381. doi:10.1002/14651858.CD005381.pub2.

    PubMed  Google Scholar 

  11. Waldstein SR, Katzel LI. Interactive relations of central versus total obesity and blood pressure to cognitive function. Int J Obes. 2006;30(1):201–7. doi:10.1038/sj.ijo.0803114.

    Article  CAS  Google Scholar 

  12. Walther K, Birdsill AC, Glisky EL, Ryan L. Structural brain differences and cognitive functioning related to body mass index in older females. Hum Brain Mapp. 2010;31(7):1052–64. doi:10.1002/hbm.20916.

    Article  PubMed  Google Scholar 

  13. Isaac V, Sim S, Zheng H, Zagorodnov V, Tai ES, Chee M. Adverse associations between visceral adiposity, brain structure, and cognitive performance in healthy elderly. Front Aging Neurosci. 2011;3:12. doi:10.3389/fnagi.2011.00012.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Benito-Leon J, Mitchell AJ, Hernandez-Gallego J, Bermejo-Pareja F. Obesity and impaired cognitive functioning in the elderly: a population-based cross-sectional study (NEDICES). Eur J Neurol Off J Eur Fed Neurol Soc. 2013;20(6):899–906. doi:10.1111/ene.12083. e76-7.

    CAS  Google Scholar 

  15. Nilsson LG, Nilsson E. Overweight and cognition. Scand J Psychol. 2009;50(6):660–7. doi:10.1111/j.1467-9450.2009.00777.x.

    Article  PubMed  Google Scholar 

  16. van Gelder BM, Tijhuis MA, Kalmijn S, Giampaoli S, Nissinen A, Kromhout D. Physical activity in relation to cognitive decline in elderly men: the FINE Study. Neurology. 2004;63(12):2316–21.

    Article  PubMed  Google Scholar 

  17. Blair SN, LaMonte MJ, Nichaman MZ. The evolution of physical activity recommendations: how much is enough? Am J Clin Nutr. 2004;79(5):913S–20S.

    CAS  PubMed  Google Scholar 

  18. Speck RM, Courneya KS, Masse LC, Duval S, Schmitz KH. An update of controlled physical activity trials in cancer survivors: a systematic review and meta-analysis. J Cancer Survivorship Res Pract. 2010;4(2):87–100. doi:10.1007/s11764-009-0110-5.

    Article  Google Scholar 

  19. Irwin ML, Smith AW, McTiernan A, Ballard-Barbash R, Cronin K, Gilliland FD, et al. Influence of pre- and postdiagnosis physical activity on mortality in breast cancer survivors: the health, eating, activity, and lifestyle study. J Clin Oncol Off J Am Soc Clin Oncol. 2008;26(24):3958–64. doi:10.1200/JCO.2007.15.9822.

    Article  Google Scholar 

  20. Bertram LA, Stefanick ML, Saquib N, Natarajan L, Patterson RE, Bardwell W, et al. Physical activity, additional breast cancer events, and mortality among early-stage breast cancer survivors: findings from the WHEL Study. Cancer Causes Control CCC. 2011;22(3):427–35. doi:10.1007/s10552-010-9714-3.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Hartman SJ, Marinac CR, Natarajan L, Patterson RE. Lifestyle factors associated with cognitive functioning in breast cancer survivors. Psycho-Oncology. 2014. doi:10.1002/pon.3626.

    PubMed  Google Scholar 

  22. Pradhan KR, Stump TE, Monahan P, Champion V. Relationships among attention function, exercise, and body mass index: a comparison between young breast cancer survivors and acquaintance controls. Psycho-Oncology. 2014. doi:10.1002/pon.3598.

    PubMed  Google Scholar 

  23. Chang YK, Etnier JL. Exploring the dose–response relationship between resistance exercise intensity and cognitive function. J Sport Exerc Psychol. 2009;31(5):640–56.

    PubMed  Google Scholar 

  24. Patterson RE, Colditz GA, Hu FB, Schmitz KH, Ahima RS, Brownson RC, et al. The 2011–2016 Transdisciplinary Research on Energetics and Cancer (TREC) initiative: rationale and design. Cancer Causes Control CCC. 2013;24(4):695–704. doi:10.1007/s10552-013-0150-z.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Choi L, Liu Z, Matthews CE, Buchowski MS. Validation of accelerometer wear and nonwear time classification algorithm. Med Sci Sports Exerc. 2011;43(2):357–64. doi:10.1249/MSS.0b013e3181ed61a3.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Freedson PS, Melanson E, Sirard J. Calibration of the Computer Science and Applications, Inc. accelerometer. Med Sci Sports Exerc. 1998;30(5):777–81.

    Article  CAS  PubMed  Google Scholar 

  27. Copeland JL, Esliger DW. Accelerometer assessment of physical activity in active, healthy older adults. J Aging Phys Act. 2009;17(1):17–30.

    PubMed  Google Scholar 

  28. Dwolatzky T, Whitehead V, Doniger GM, Simon ES, Schweiger A, Jaffe D, et al. Validity of the Mindstreams computerized cognitive battery for mild cognitive impairment. J Mol Neurosci MN. 2004;24(1):33–44.

    Article  CAS  PubMed  Google Scholar 

  29. Dwolatzky T, Whitehead V, Doniger GM, Simon ES, Schweiger A, Jaffe D, et al. Validity of a novel computerized cognitive battery for mild cognitive impairment. BMC Geriatr. 2003;3:4. doi:10.1186/1471-2318-3-4.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Doniger GM, Crystal H, Jo MY, Simon ES. Computerized cognitive tests identify MCI in urban black individuals. Neurology. 2005;64(6):A364.

    Google Scholar 

  31. Kesse-Guyot E, Charreire H, Andreeva VA, Touvier M, Hercberg S, Galan P, et al. Cross-sectional and longitudinal associations of different sedentary behaviors with cognitive performance in older adults. PLoS One. 2012;7(10):e47831. doi:10.1371/journal.pone.0047831.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Dogra S, Stathokostas L. Sedentary behavior and physical activity are independent predictors of successful aging in middle-aged and older adults. J Aging Res. 2012;2012:190654. doi:10.1155/2012/190654.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Hamer M, Stamatakis E. Prospective study of sedentary behavior, risk of depression, and cognitive impairment. Med Sci Sports Exerc. 2014;46(4):718–23. doi:10.1249/MSS.0000000000000156.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Brezden CB, Phillips KA, Abdolell M, Bunston T, Tannock IF. Cognitive function in breast cancer patients receiving adjuvant chemotherapy. J Clin Oncol Off J Am Soc Clin Oncol. 2000;18(14):2695–701.

    CAS  Google Scholar 

  35. Spitznagel MB, Alosco M, Galioto R, Strain G, Devlin M, Sysko R, et al. The role of cognitive function in postoperative weight loss outcomes: 36-month follow-up. Obes Surg. 2014;24(7):1078–84. doi:10.1007/s11695-014-1205-2.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Kamijo K, Nishihira Y, Hatta A, Kaneda T, Wasaka T, Kida T, et al. Differential influences of exercise intensity on information processing in the central nervous system. Eur J Appl Physiol. 2004;92(3):305–11. doi:10.1007/s00421-004-1097-2.

    Article  PubMed  Google Scholar 

  37. Hillman CH, Kramer AF, Belopolsky AV, Smith DP. A cross-sectional examination of age and physical activity on performance and event-related brain potentials in a task switching paradigm. Int J Psychophysiol Off J Int Org Psychophysiol. 2006;59(1):30–9. doi:10.1016/j.ijpsycho.2005.04.009.

    Article  Google Scholar 

  38. Dik M, Deeg DJ, Visser M, Jonker C. Early life physical activity and cognition at old age. J Clin Exp Neuropsychol. 2003;25(5):643–53. doi:10.1076/jcen.25.5.643.14583.

    Article  PubMed  Google Scholar 

  39. Hofer MM, Barde YA. Brain-derived neurotrophic factor prevents neuronal death in vivo. Nature. 1988;331(6153):261–2. doi:10.1038/331261a0.

    Article  CAS  PubMed  Google Scholar 

  40. Poo MM. Neurotrophins as synaptic modulators. Nat Rev Neurosci. 2001;2(1):24–32. doi:10.1038/35049004.

    Article  CAS  PubMed  Google Scholar 

  41. Monteggia LM, Barrot M, Powell CM, Berton O, Galanis V, Gemelli T, et al. Essential role of brain-derived neurotrophic factor in adult hippocampal function. Proc Natl Acad Sci U S A. 2004;101(29):10827–32. doi:10.1073/pnas.0402141101.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Coelho FG, Vital TM, Stein AM, Arantes FJ, Rueda AV, Camarini R, et al. Acute aerobic exercise increases brain-derived neurotrophic factor levels in elderly with Alzheimer’s disease. Journal Alzheimer’s Dis JAD. 2014;39(2):401–8. doi:10.3233/JAD-131073.

    CAS  PubMed  Google Scholar 

  43. Rasmussen P, Brassard P, Adser H, Pedersen MV, Leick L, Hart E, et al. Evidence for a release of brain-derived neurotrophic factor from the brain during exercise. Exp Physiol. 2009;94(10):1062–9. doi:10.1113/expphysiol.2009.048512.

    Article  CAS  PubMed  Google Scholar 

  44. Tang SW, Chu E, Hui T, Helmeste D, Law C. Influence of exercise on serum brain-derived neurotrophic factor concentrations in healthy human subjects. Neurosci Lett. 2008;431(1):62–5. doi:10.1016/j.neulet.2007.11.019.

    Article  CAS  PubMed  Google Scholar 

  45. Griffin EW, Mullally S, Foley C, Warmington SA, O’Mara SM, Kelly AM. Aerobic exercise improves hippocampal function and increases BDNF in the serum of young adult males. Physiol Behav. 2011;104(5):934–41. doi:10.1016/j.physbeh.2011.06.005.

    Article  CAS  PubMed  Google Scholar 

  46. Erickson KI, Voss MW, Prakash RS, Basak C, Szabo A, Chaddock L, et al. Exercise training increases size of hippocampus and improves memory. Proc Natl Acad Sci U S A. 2011;108(7):3017–22. doi:10.1073/pnas.1015950108.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Ruscheweyh R, Willemer C, Kruger K, Duning T, Warnecke T, Sommer J, et al. Physical activity and memory functions: an interventional study. Neurobiol Aging. 2011;32(7):1304–19. doi:10.1016/j.neurobiolaging.2009.08.001.

    Article  CAS  PubMed  Google Scholar 

  48. Laurin D, Verreault R, Lindsay J, MacPherson K, Rockwood K. Physical activity and risk of cognitive impairment and dementia in elderly persons. Arch Neurol. 2001;58(3):498–504.

    Article  CAS  PubMed  Google Scholar 

  49. Yaffe K, Barnes D, Nevitt M, Lui LY, Covinsky K. A prospective study of physical activity and cognitive decline in elderly women: women who walk. Arch Intern Med. 2001;161(14):1703–8.

    Article  CAS  PubMed  Google Scholar 

  50. Colcombe S, Kramer AF. Fitness effects on the cognitive function of older adults: a meta-analytic study. Psychol Sci. 2003;14(2):125–30.

    Article  PubMed  Google Scholar 

  51. Weuve J, Kang JH, Manson JE, Breteler MM, Ware JH, Grodstein F. Physical activity, including walking, and cognitive function in older women. JAMA J Am Med Assoc. 2004;292(12):1454–61. doi:10.1001/jama.292.12.1454.

    Article  CAS  Google Scholar 

  52. Rojas Vega S, Struder HK, Vera Wahrmann B, Schmidt A, Bloch W, Hollmann W. Acute BDNF and cortisol response to low intensity exercise and following ramp incremental exercise to exhaustion in humans. Brain Res. 2006;1121(1):59–65. doi:10.1016/j.brainres.2006.08.105.

    Article  CAS  PubMed  Google Scholar 

  53. Kerr J, Marshall SJ, Patterson RE, Marinac CR, Natarajan L, Rosenberg D, et al. Objectively measured physical activity is related to cognitive function in older adults. J Am Geriatr Soc. 2013;61(11):1927–31. doi:10.1111/jgs.12524.

    Article  PubMed  Google Scholar 

  54. Siervo M, Arnold R, Wells JC, Tagliabue A, Colantuoni A, Albanese E, et al. Intentional weight loss in overweight and obese individuals and cognitive function: a systematic review and meta-analysis. Obes Rev Off J Int Assoc Study Obes. 2011;12(11):968–83. doi:10.1111/j.1467-789X.2011.00903.x.

    Article  CAS  Google Scholar 

  55. Maher CA, Mire E, Harrington DM, Staiano AE, Katzmarzyk PT. The independent and combined associations of physical activity and sedentary behavior with obesity in adults: NHANES 2003–06. Obesity. 2013;21(12):E730–7. doi:10.1002/oby.20430.

    Article  PubMed Central  PubMed  Google Scholar 

  56. Fan JX, Brown BB, Hanson H, Kowaleski-Jones L, Smith KR, Zick CD. Moderate to vigorous physical activity and weight outcomes: does every minute count? Am J Health Promot AJHP. 2013;28(1):41–9. doi:10.4278/ajhp.120606-QUAL-286.

    Article  PubMed  Google Scholar 

  57. Freyschuss U, Melcher A. Exercise energy expenditure in extreme obesity: influence of ergometry type and weight loss. Scand J Clin Lab Invest. 1978;38(8):753–9.

    Article  CAS  PubMed  Google Scholar 

  58. Mattsson E, Larsson UE, Rossner S. Is walking for exercise too exhausting for obese women? Int J Obes Relat Metab Disord J Int Assoc Study Obes. 1997;21(5):380–6.

    Article  CAS  Google Scholar 

  59. Melanson EL, Sharp TA, Seagle HM, Horton TJ, Donahoo WT, Grunwald GK, et al. Effect of exercise intensity on 24-h energy expenditure and nutrient oxidation. J Appl Physiol. 2002;92(3):1045–52. doi:10.1152/japplphysiol.00706.2001.

    Article  CAS  PubMed  Google Scholar 

  60. Kerr J, Marshall SJ, Godbole S, Chen J, Legge A, Doherty AR, et al. Using the SenseCam to improve classifications of sedentary behavior in free-living settings. Am J Prev Med. 2013;44(3):290–6. doi:10.1016/j.amepre.2012.11.004.

    Article  PubMed  Google Scholar 

  61. Trost SG, O’Neil M. Clinical use of objective measures of physical activity. Br J Sports Med. 2014;48(3):178–81. doi:10.1136/bjsports-2013-093173.

    Article  PubMed  Google Scholar 

  62. Clemes SA, Parker RA. Increasing our understanding of reactivity to pedometers in adults. Med Sci Sports Exerc. 2009;41(3):674–80. doi:10.1249/MSS.0b013e31818cae32.

    Article  PubMed  Google Scholar 

  63. Prince SA, Adamo KB, Hamel ME, Hardt J, Connor Gorber S, Tremblay M. A comparison of direct versus self-report measures for assessing physical activity in adults: a systematic review. Int J Behav Nutr Phys Act. 2008;5:56. doi:10.1186/1479-5868-5-56.

    Article  PubMed Central  PubMed  Google Scholar 

  64. Ainsworth BE, Caspersen CJ, Matthews CE, Masse LC, Baranowski T, Zhu W. Recommendations to improve the accuracy of estimates of physical activity derived from self report. J Phys Act Health. 2012;9 Suppl 1:S76–84.

    PubMed Central  PubMed  Google Scholar 

  65. Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12(3):189–98.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Research support was provided by funding from the National Cancer Institute (U54 CA155435-01). Ms. Marinac was also a recipient of a Ruth L. Kirschstein National Research Service Award (NRSA) Institutional Training Grant (T32), awarded to San Diego State University by the National Institute of General Medical Sciences (5 T32 GM084896).

The authors would also like to acknowledge Glen Doniger and the NeuroTrax Corporation for their scientific guidance and generous contribution of cognitive testing software.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheri J. Hartman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marinac, C.R., Godbole, S., Kerr, J. et al. Objectively measured physical activity and cognitive functioning in breast cancer survivors. J Cancer Surviv 9, 230–238 (2015). https://doi.org/10.1007/s11764-014-0404-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11764-014-0404-0

Keywords

Navigation