Skip to main content

Advertisement

Log in

A review of exercise interventions to improve bone health in adult cancer survivors

  • Published:
Journal of Cancer Survivorship Aims and scope Submit manuscript

Abstract

Introduction

Cancer-treatment induced bone loss and associated fracture risk is a growing concern for cancer survivors. Exercise offers a non-pharmacologic strategy for preserving bone health during and after treatment, but only until recently has it been studied for its efficacy and safety in cancer survivors. The purpose of this review is to provide an early qualitative evaluation of exercise trials in adult cancer survivors with bone health as a primary or secondary endpoint.

Methods

Databases were searched for exercise trials in adult cancer survivors that reported data on bone health (bone mineral density (BMD) and/or bone remodeling markers) as an outcome measure and were published and indexed prior to January 1st, 2010. Data relevant to evaluation of study design, sample, exercise protocol, bone health assessment, statistical approach and findings were extracted, summarized and interpreted.

Results

Eight trials were identified that met criteria for inclusion in the review. While most studies were conducted in breast cancer survivors, remaining study attributes including rigor, design, exercise program characteristics and length varied considerably across studies. Only three of the eight studies were controlled exercise trials with usual care control groups. Of these, two reported significant group × time interactions where aerobic exercise preserved BMD at the spine or whole body compared to losses in controls and none reported exercise benefits at the hip.

Conclusions

The recent emergence of exercise studies in cancer survivors with bone outcomes highlights the importance of this area of cancer survivorship. Collectively, the studies are limited in number and are too varied to warrant conclusions regarding the skeletal benefits of exercise during or after cancer treatment, though early results are encouraging and more rigorous study should follow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIGURE 1

Similar content being viewed by others

References

  1. Saad F, Adachi JD, Brown JP, Canning LA, Gelmon KA, Josse RG, et al. Cancer treatment-induced bone loss in breast and prostate cancer. J Clin Oncol. 2008;26:5465–76.

    Article  PubMed  Google Scholar 

  2. Greep NC, Giuliano AE, Hansen NM, Taketani T, Wang H-J, Singer FR. The effects of adjuvant chemotherapy on bone density in postmenopausal women with early breast cancer. Am J Med. 2003;114:653–9.

    Article  PubMed  Google Scholar 

  3. Shapiro CL, Manola J, Leboff M. Ovarian failure after adjuvant chemotherapy is associated with rapid bone loss in women with early-stage breast cancer. J Clin Oncol. 2001;19:3306–11.

    PubMed  CAS  Google Scholar 

  4. Ratcliff MA, Lanham SA, Reid DM, Audreym AD. Bone mineral density (BMD) in patients with lymphoma: the effects of chemotherapy, intermittent corticosteroids and premature menopause. Hematol Oncol. 1992;10:181–7.

    Article  Google Scholar 

  5. Kelley GA. Exercise and regional bone mineral density in postmenopausal women: a meta-analytic review of randomized trials. Am J Phys Med Rehabil. 1998;77:76–87.

    Article  PubMed  CAS  Google Scholar 

  6. Chen Z, Maricic M, Bassford TL, Pettinger M, Ritenbaugh C, Lopez AM, et al. Fracture risk among breast cancer survivors: results from the Women’s Health Initiative Observational Study. Arch Intern Med. 2005;165:552–8.

    Article  PubMed  Google Scholar 

  7. Shahinian VB, Kuo Y-F, Freeman JL, Goodwin JS. Risk of fracture after androgen deprivation for prostate cancer. New Engl J Med. 2005;352:154–64.

    Article  PubMed  CAS  Google Scholar 

  8. Smith MR, Lee WC, Brandman J, Wang Q, Botteman M, Pashos CL. Gonadotropin-releasing hormone agonists and fracture risk: a claims-based cohort study of men with nonmetastatic prostate cancer. J Clin Oncol. 2005;23:7897–903.

    Article  PubMed  CAS  Google Scholar 

  9. Hillner BE, Ingle JN, Chlebowski RT, Gralow J, Yee GC, Janjan NA, et al. American Society of Clinical Oncology 2003 update on the role of bisphosphonates and bone health issues in women with breast cancer. J Clin Oncol. 2003;21:4042–57.

    Article  PubMed  CAS  Google Scholar 

  10. Gralow JR, Biermann JS, Farooki A, Fornier MN, Gagel RF, Kumar RN, et al. NCCN task force report: bone health in cancer care. J Natl Compr Canc Netw. 2009;7 Suppl 3:S1–S32.

    PubMed  Google Scholar 

  11. Frost HM. Skeletal structural adaptations to mechanical usage (SATMU). 1. Redefining Wolffe’s Law: the bone modeling problem. Anat Rec. 1990;226:403–13.

    Article  PubMed  CAS  Google Scholar 

  12. Bonaiuti D, Shea B, Iovine R, Negrini S, Robinson V, Kemper HC, et al. Exercise for preventing and treating osteoporosis in postmenopausal women. Cochrane Database Syst Rev. 2002;3:CD000333.

    PubMed  Google Scholar 

  13. Wallace BA, Cumming RG. Systematic review of randomized trials of the effect of exercise on bone mass in pre- and postmenopausal women. Calcif Tissue Int. 2000;67:10–8.

    Article  PubMed  CAS  Google Scholar 

  14. Beck BR, Snow CM. Bone health across the lifespan—exercising our options. Exerc Sport Sci Rev. 2003;31:117–22.

    Article  PubMed  Google Scholar 

  15. Martyn-St James M, Carroll S. Meta-analysis of walking for preservation of bone mineral density in postmenopausal women. Bone. 2008;43:521–31.

    Article  PubMed  Google Scholar 

  16. Martyn-St James M, Carroll S. A meta-analysis of impact exercise on postmenopausal bone loss: the case for mixed loading exercise programmes. Br J Sports Med. 2009;43:898–908.

    Article  PubMed  CAS  Google Scholar 

  17. Kohrt WM, Bloomfield SA, Little KD, Nelson ME, Yingling VR. American College of Sports Medicine Position Stand: physical activity and bone health. Med Sci Sports Exerc. 2004;36:1985–96.

    Article  PubMed  Google Scholar 

  18. Courneya KS. Exercise in cancer survivors: an overview of research. Med Sci Sports Exerc. 2003;35:1846–52.

    Article  PubMed  Google Scholar 

  19. Knols R, Aaronson NK, Uebelhart D, Fransen J, Aufdemkampe G. Physical exercise in cancer patients during and after medical treatment: a systematic review of randomized and controlled clinical trials. J Clin Oncol. 2005;23:3830–42.

    Article  PubMed  Google Scholar 

  20. Markes M, Brockow T, Resch KL. Exercise for women receiving adjuvant therapy for breast cancer. Cochrane Database Syst Rev. 2006;18:CD00500121.

    Google Scholar 

  21. McNeely ML, Campbell KL, Rowe BH, Klassen TP, Mackey JR, Courneya KS. Effects of exercise on breast cancer patients and survivors: a systematic review and meta-analysis. Can Med Assoc J. 2006;175:34–41.

    Article  Google Scholar 

  22. Spence RR, Heesch KC, Brown WJ. Exercise and cancer rehabilitation: a systematic review. Cancer Treat Rev. 2009; (Epub ahead of print).

  23. Galvao DA, Nosaka K, Taaffe DR, Spry N, Kristjanson LJ, McGuigan MR, et al. Resistance training and reduction of treatment side effects in prostate cancer patients. Med Sci Sports Exerc. 2006;38:2045–52.

    Article  PubMed  Google Scholar 

  24. Knobf MT, Insogna K, DiPietro L, Fennie C, Thompson AS. An aerobic weight-loaded pilot exercise intervention for breast cancer survivors: bone remodeling and body composition outcomes. Biol Res Nurs. 2008;10:34–43.

    Article  PubMed  Google Scholar 

  25. Irwin ML, Alvarez-Reeves M, Cadmus L, Mierzejewski E, Mayne ST, Yu H, et al. Exercise improves body fat, lean mass, and bone mass in breast cancer survivors. Obesity (Silver Spring). 2009;17:1534–41.

    Article  Google Scholar 

  26. Rogers LQ, Hopkins-Price P, Vicari S, Pamenter R, Courneya KS, Markwell S, et al. A randomized trial to increase physical activity in breast cancer survivors. Med Sci Sports Exerc. 2009;41:935–46.

    Article  PubMed  Google Scholar 

  27. Rogers LQ, Hopkins-Price P, Vicari S, Markwell S, Pamenter R, Courneya KS, et al. Physical activity and health outcomes three months after completing a physical activity behavior change intervention: persistent and delayed effects. Cancer Epidemiol Biomarkers Prev. 2009;18:1410–8.

    Article  PubMed  Google Scholar 

  28. Swenson KK, Nissen MJ, Anderson E, Shapiro A, Schousboe J, Leach J. Effects of exercise vs bisphosphonates on bone mineral density in breast cancer patients receiving chemotherapy. J Support Oncol. 2009;7:101–7.

    PubMed  CAS  Google Scholar 

  29. Schwartz AL, Winters-Stone K, Gallucci B. Exercise effects on bone mineral density in women with breast cancer receiving adjuvant chemotherapy. Oncol Nurs Forum. 2007;34:627–33.

    Article  PubMed  Google Scholar 

  30. Waltman NL, Twiss JJ, Ott CD, Gross GJ, Lindsey AM, Moore TE, et al. Testing an intervention for preventing osteoporosis in postmenopausal breast cancer survivors. J Nurs Scholarsh. 2003;35:333–8.

    Article  PubMed  Google Scholar 

  31. Waltman NL, Twiss JJ, Ott CD, Gross GJ, Lindsey AM, Moore TE, et al. The effect of weight training on bone mineral density and bone turnover in postmenopausal breast cancer survivors with bone loss: a 24-month randomized controlled trial. Osteoporos Int. 2009; (Epub ahead of print).

  32. Matthews CE, Wilcox S, Hanby CL, Der Ananian C, Heiney SP, Gebretsadik T, et al. Evaluation of a 12-week home-based walking intervention for breast cancer survivors. J Support Care Cancer. 2007;15:203–11.

    Article  Google Scholar 

  33. Schmitz KH, Ahmed RL, Hannan PJ, Yee D. Safety and efficacy of weight training in recent breast cancer survivors to alter body composition, insulin, and insulin-like growth factor axis proteins. Cancer Epidemiol Biomarkers Prev. 2005;14:1672–80.

    Article  PubMed  CAS  Google Scholar 

  34. Stevinson C, Lawlor DA, Fox KR. Exercise interventions for cancer patients: systematic review of controlled trials. Cancer Causes Control. 2004;15:1035–56.

    Article  PubMed  Google Scholar 

  35. Kraemer WJ, Adams K, Cafarelli E, Dudley GA, Dooly C, Feigenbaum MS, et al. American College of Sports Medicine position stand. Progression models in resistance training for healthy adults. Med Sci Sports Exerc. 2002;34:364–80.

    Article  PubMed  Google Scholar 

  36. Valachis A, Polyzos NP, Georgomicronulias V, Mavroudis D, Mauri D. Lack of evidence for fracture prevention in early breast cancer bisphosphonate trials: a meta-analysis. Gynecol Oncol. 2010; (Epub ahead of print).

  37. Kanis JA. Diagnosis of osteoporosis and assessment of fracture risk. Lancet. 2002;359:1929–36.

    Article  PubMed  Google Scholar 

  38. Schott AM, Cormier C, Hans D, Favier F, Hausherr E, Dargent-Molina P, et al. How hip and whole-body bone mineral density predict hip fracture in elderly women: the EPIDOS Prospective Study. Osteoporos Int. 1998;8:247–54.

    Article  PubMed  CAS  Google Scholar 

  39. Baim S, Binkley N, Bilezikian JP, Kendler DL, Hans DB, Lewiecki EM, et al. Official Positions of the International Society for Clinical Densitometry and executive summary of the 2007 ISCD Position Development Conference. J Clin Densitom. 2008;11:75–91.

    Article  PubMed  Google Scholar 

  40. World Health Organization. Assessment of fracture risk and its application to screening for osteoporosis. In: 843 Wtrs, editor. Geneva: WHO; 1994.

  41. Abrahamsen B, van Staa T, Ariely R, Olson M, Cooper C. Excess mortality following hip fracture: a systematic epidemiological review. Osteoporos Int. 2009;20:1633–50.

    Article  PubMed  CAS  Google Scholar 

  42. Wasnich RD, Miller PD. Antifracture efficacy of antiresorptive agents are related to changes in bone density. J Clin Endocrinol Metab. 2000;85:231–6.

    Article  PubMed  CAS  Google Scholar 

  43. Rubin CT, Bain SD, McLeod KJ. Suppression of the osteogenic response in the aging skeleton. Calcif Tiss Int. 1992;50:306–13.

    Article  CAS  Google Scholar 

  44. Frost HM. The role of changes in mechanical usage set points in the pathogenesis of osteoporosis. J Bone Miner Res. 1992;7:253–61.

    Article  PubMed  CAS  Google Scholar 

  45. Bassey E, Rothwell M, Littlewood J, Pye D. Pre- and postmenopausal women have different bone mineral density responses to the same high-impact exercise. J Bone Miner Res. 1998;13:1805–13.

    Article  PubMed  CAS  Google Scholar 

  46. ATAC Trialists’ Group. Results of the ATAC (Arimidex, Tamoxifen, Alone or in Combination) trial after completion of 5 years’ adjuvant treatment for breast cancer. Lancet. 2005;365:60–2.

    Article  CAS  Google Scholar 

  47. Uusi-Rasi K, Kannus P, Cheng S, Sievanen H, Pasanen M, Heinonen A, et al. Effect of alendronate and exercise on bone and physical performance of postmenopausal women: a randomized controlled trial. Bone. 2003;33:132–43.

    Article  PubMed  CAS  Google Scholar 

  48. Carter DR. Mechanical loading history and skeletal biology. J Biomech. 1987;20:785–94.

    Article  PubMed  CAS  Google Scholar 

  49. Warden SJ, Fuchs RK, Turner CH. Steps for targeting exercise towards the skeleton to increase bone strength. Eura Medicophys. 2004;40:223–32.

    PubMed  CAS  Google Scholar 

  50. Turner CH, Robling AG. Designing exercise regimens to increase bone strength. Exerc Sport Sci Rev. 2003;31:45–50.

    Article  PubMed  Google Scholar 

  51. Drinkwater BL, Grimston SK, Raab-Cullen DM, Snow-Harter CM. ACSM position stand on osteoporosis and exercise. Med Sci Sports Exerc. 1995;27:i–viii.

    Google Scholar 

  52. Winters-Stone K, Snow C. Site-specific response of bone to exercise in premenopausal women. Bone. 2006;39:1203–9.

    Article  PubMed  Google Scholar 

  53. Hatori M, Hasegawa A, Adachi H, Shinozaki A, Hayashi R, Okano H, et al. The effects of walking at the anaerobic threshold level on vertebral bone loss in postmenopausal women. Calcif Tissue Int. 1993;52:411–4.

    Article  PubMed  CAS  Google Scholar 

  54. Kerr D, Morton A, Dick I, Prince R. Exercise effects on bone mass in postmenopausal women are site-specific and load-dependent. J Bone Min Res. 1996;11:218–25.

    Article  CAS  Google Scholar 

  55. Kohrt W, Ehsani A, Birge S. Effects of exercise involving predominantly either joint-reaction or ground-reaction forces on bone mineral density in older women. J Bone Min Res. 1997;12:1253–61.

    Article  CAS  Google Scholar 

  56. Carter DR. Mechanical loading histories and cortical bone remodeling. Calcif Tissue Int. 1984;36:S19–24.

    Article  PubMed  Google Scholar 

  57. Kerr D, Morton A, Dick I, Prince R. Exercise effects on bone mass in postmenopausal women are site-specific and load-dependent. J Bone Min Res. 1996;11:218–25.

    Article  CAS  Google Scholar 

  58. Maddalozzo GF, Snow CM. High intensity resistance training: effects on bone in older men and women. Calcif Tiss Int. 2000;66:399–404.

    Article  CAS  Google Scholar 

  59. Cussler EC, Lohman TG, Going SB, Houtkooper LB, Metcalfe LL, Flint-Wagner HG, et al. Weight lifted in strength training predicts bone change in postmenopausal women. Med Sci Sports Exerc. 2003;35:10–7.

    Article  PubMed  Google Scholar 

  60. Winters KM, Snow C. Initial values predict musculoskeletal response to exercise in premenopausal women. Med Sci Sports Exerc. 2003;35:1691–6.

    Article  Google Scholar 

  61. Winters KM, Snow CM. Detraining reverses positive effects of exercise on the musculoskeletal system in premenopausal women. J Bone Miner Res. 2000;15:2495–503.

    Article  PubMed  CAS  Google Scholar 

  62. Kelley G. Aerobic exercise and lumbar spine bone mineral density in postmenopausal women: a meta-analysis. J Am Geriatr Soc. 1998;46:143–52.

    PubMed  CAS  Google Scholar 

  63. Kelley GA. Aerobic exercise and bone density at the hip in postmenopausal women: a meta-analysis. Prev Med. 1998;27:798–807.

    Article  PubMed  CAS  Google Scholar 

  64. Kelley GA, Kelley KS. Efficacy of resistance exercise on lumbar spine and femoral neck bone mineral density in premenopausal women: a meta-analysis of individual patient data. J Women’s Health. 2004;13:293–300.

    Article  Google Scholar 

  65. Kelley GA, Kelley KS. Exercise and bone mineral density at the femoral neck in postmenopausal women: a meta-analysis of controlled clinical trials with individual patient data. Am J Obstet Gynecol. 2006;194:760–7.

    Article  PubMed  Google Scholar 

  66. Kelley GA, Kelley KS, Tran ZV. Exercise and bone mineral density in men: a meta-analysis. J Appl Physiol. 2000;88:1730–6.

    PubMed  CAS  Google Scholar 

  67. Kelley GADA, Kelley KSM, Tran ZVP. Resistance training and bone mineral density in women: a meta-analysis of controlled trials. Am J Phys Rehabil. 2001;80:65–77.

    Article  CAS  Google Scholar 

  68. Martyn-St James M, Carroll S. High-intensity resistance training and postmenopausal bone loss: a meta-analysis. Osteoporos Int. 2006;17:1225–40.

    Article  PubMed  CAS  Google Scholar 

  69. Wolff I, van Croonenborg J, Kemper H, Kostense P, Twisk J. The effect of exercise training programs on bone mass: a meta-analysis of published controlled trials in pre- and postmenopausal women. Osteoporos Int. 1999;9:1–12.

    Article  PubMed  CAS  Google Scholar 

  70. Berard A, Bravo G, Gauthier P. Meta-analysis of the effectiveness of physical activity for the prevention of bone loss in postmenopausal women. Osteoporos Int. 1997;7:331–7.

    Article  PubMed  CAS  Google Scholar 

  71. Martyn-St James M, Carroll S. Progressive high-intensity resistance training and bone mineral density changes among premenopausal women: evidence of discordant site-specific skeletal effects. Sports Med. 2006;36:683–704.

    Article  PubMed  Google Scholar 

  72. Frost HM. Should fracture risk-of-fracture analyses include another major risk factor? The case for falls. J Clin Densitom. 2001;4:381–3.

    Article  PubMed  CAS  Google Scholar 

  73. Winters-Stone KM, Nail L, Bennett JA, Schwartz A. Bone health and falls: fracture risk in breast cancer survivors with chemotherapy-induced amenorrhea. Oncol Nurs Forum. 2009;36:315–25.

    Article  PubMed  Google Scholar 

  74. Freedman RJ, Aziz N, Albanes D, Hartman T, Danforth D, Hill S, et al. Weight and body composition changes during and after adjuvant chemotherapy in women with breast cancer. J Clin Endocrinol Metab. 2004;89:2248–53.

    Article  PubMed  CAS  Google Scholar 

  75. Demark-Wahnefried W, Peterson BL, Winer EP, Marks L, Aziz N, Marcom PK, et al. Changes in weight, body composition, and factors influencing energy balance among premenopausal breast cancer patients receiving adjuvant chemotherapy. J Clin Oncol. 2001;19:2381–9.

    PubMed  CAS  Google Scholar 

  76. Harvie MN, Campbell IT, Baildam A, Howell A. Energy balance in early breast cancer patients receiving adjuvant chemotherapy. Breast Cancer Res Treat. 2004;83:201–10.

    Article  PubMed  CAS  Google Scholar 

  77. Cheney CL, Mahloch J, Freeny P. Computerized tomography assessment of women with weight changes associated with adjuvant treatment for breast cancer. Am J Clin Nutr. 1997;66:141–6.

    PubMed  CAS  Google Scholar 

  78. Kutynec CL, McCargar L, Barr SI, Hislop TG. Energy balance in women with breast cancer during adjuvant treatment. J Am Diet Assoc. 1999;99:1222–7.

    Article  PubMed  CAS  Google Scholar 

  79. Wampler MA, Topp KS, Miaskowski C, Byl NN, Rugo HS, Hamel K. Quantitative and clinical description of postural instability in women with breast cancer treated with taxane chemotherapy. Arch Phys Med Rehab. 2007;88:1002–8.

    Article  Google Scholar 

  80. Kuroi K, Shimozuma K. Neurotoxicity of taxanes: symptoms and quality of life assessment. Breast Cancer. 2004;11:92–9.

    Article  PubMed  Google Scholar 

  81. Eisner A, Toomey MD, Falardeau J, Samples JR, Vetto JT. Differential effects of tamoxifen and anastrozole on optic cup size in breast cancer survivors. Breast Cancer Res Treat. 2007;106:161–70.

    Article  PubMed  CAS  Google Scholar 

  82. Eisner A, Incognito LJ. The color appearance of stimuli detected via short-wavelength-sensitive cones for breast cancer survivors using tamoxifen. Vision Res. 2006;46:1816–22.

    Article  PubMed  CAS  Google Scholar 

  83. Lord S, Rogers M, Howland A, Fitzpatrick R. Lateral stability, sensorimotor function and falls in older people. J Am Geriatr Soc. 1999;47:1077–81.

    PubMed  CAS  Google Scholar 

  84. Dargent-Molina P, Favier F, Grandjean H, Baudoin C, Schott A, Hausherr E, et al. Fall-related factors and risk of hip fracture: the EPIDOS prospective study. Lancet. 1996;348:145–9.

    Article  PubMed  CAS  Google Scholar 

  85. American Geriatrics Society, British Geriatrics Society, and American Academy of Orthopaedic Surgeons Panel on Falls Prevention. Guideline for the prevention of falls in older persons. J Am Geriatr Soc. 2001;49:664–72.

    Article  Google Scholar 

  86. Mold JW, Vesely SK, Keyl BA, Schenk JB, Roberts M. The prevalence, predictors, and consequences of peripheral sensory neuropathy in older patients. J Am Board Fam Pract. 2004;17:309–18.

    Article  PubMed  Google Scholar 

  87. Sherrington C, Whitney JC, Lord SR, Herbert RD, Cumming RG, Close JC. Effective exercise for the prevention of falls: a systematic review and meta-analysis. J Am Geriatr Soc. 2008;56:2234–43.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kerri M. Winters-Stone.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Winters-Stone, K.M., Schwartz, A. & Nail, L.M. A review of exercise interventions to improve bone health in adult cancer survivors. J Cancer Surviv 4, 187–201 (2010). https://doi.org/10.1007/s11764-010-0122-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11764-010-0122-1

Keywords

Navigation