Skip to main content
Log in

Delay resistant line planning with a view towards passenger transfers

  • Original Paper
  • Published:
TOP Aims and scope Submit manuscript

Abstract

The line planning step, as part of the public transportation planning process, is an elementary problem. When generating public transportation systems in a conventional fashion, the line planning problem is one of the first to solve. Hence, subsequent problems rely on the solution of the line planning problem. Line planning has been studied from various perspectives and is understood very well. Still, the effect of this planning step on to the next ones has only received minor attention. In this paper, we study the effect of transfers on the delay resistance and propose a line planning model which provides a good basis for a delay resistant transportation system. To this end, the concept of preferable paths from the direct travelers line planning model is further extended. The model includes the routing of passengers in order to minimize passenger transfers. A column generation approach is shown to properly solve the proposed model. As such, this is the first line planning model which detailedly routes the passengers and is still tractable on realistically sized instances. Finally, it is shown that minimizing the passenger transfers at the line planning stage contributes to an increasing delay resistance in the public transportation system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andersson E, Peterson A, Törnquist Krasemann J (2015) Improved railway timetable robustness for reduced traffic delays–a milp approach. In: 6th international conference on railway operations modelling and analysis-railTokyo

  • Barnhart C, Johnson EL, Nemhauser GL, Savelsbergh MWP, Vance PH (1998) Branch-and-price: column generation for solving huge integer programs. Oper Res 46(3):316–329

    Article  Google Scholar 

  • Bellman R (1958) On a routing problem. Q Appl Math 16(1):87–90

    Article  Google Scholar 

  • Bertsimas D, Sim M (2004) The price of robustness. Oper Res 52(1):35–53

    Article  Google Scholar 

  • Bertsimas D, Weismantel R (2005) Optimization over integers, vol 13. Dynamic Ideas, Belmont, Massachusetts

    Google Scholar 

  • Borndörfer R, Grötschel M, Pfetsch ME (2007) A column-generation approach to line planning in public transport. Transp Sci 41(1):123–132

    Article  Google Scholar 

  • Borndörfer R, Grötschel M, Pfetsch ME (2008) Models for line planning in public transport. In: Hickman M, Mirchandani P, Voß S (eds) Computer-aided systems in public transport. Springer, Berlin, pp 363–378

    Chapter  Google Scholar 

  • Bussieck MR, Kreuzer P, Zimmermann UT (1997) Optimal lines for railway systems. Eur J Oper Res 96(1):54–63

    Article  Google Scholar 

  • Bussieck MR, Winter T, Zimmermann UT (1997) Discrete optimization in public rail transport. Math Program 79(1–3):415–444

    Google Scholar 

  • Cacchiani V, Toth P (2012) Nominal and robust train timetabling problems. Eur J Oper Res 219(3):727–737

    Article  Google Scholar 

  • Cacchiani V, Caprara A, Toth P (2010) Non-cyclic train timetabling and comparability graphs. Oper Res Lett 38(3):179–184

    Article  Google Scholar 

  • Cacchiani V, Huisman D, Kidd M, Kroon L, Toth P, Veelenturf L, Wagenaar J (2014) An overview of recovery models and algorithms for real-time railway rescheduling. Transp Res Part B Methodol 63:15–37

    Article  Google Scholar 

  • Caprara A, Fischetti M, Toth P (2002) Modeling and solving the train timetabling problem. Oper Res 50(5):851–861

    Article  Google Scholar 

  • Claessens MT, van Dijk NM, Zwaneveld PJ (1998) Cost optimal allocation of rail passenger lines. Eur J Oper Res 110(3):474–489

    Article  Google Scholar 

  • Ceder A, Wilson NHM (1986) Bus network design. Transp Res Part B Methodol 20(4):331–344

    Article  Google Scholar 

  • Desaulniers G, Hickman M (2003) Public transit. Transp Handb Oper Res Manag Sci 14:69–127

    Article  Google Scholar 

  • Desrosiers J, Lübbecke ME (2005) A primer in column generation. Springer, Berlin

    Book  Google Scholar 

  • Dewilde T, Sels P, Cattrysse D, Vansteenwegen P (2013) Robust railway station planning: an interaction between routing, timetabling and platforming. J Rail Transp Plan Manag 3(3):68–77

    Article  Google Scholar 

  • Dienst H (1978) Linienplanung im spurgeführten Personenverkehr mit Hilfe eines heuristischen Verfahrens. PhD thesis, Technische Universität Braunschweig (In German)

  • Dollevoet T, Huisman D, Schmidt M, Schöbel A (2012) Delay management with rerouting of passengers. Transp Sci 46(1):74–89

    Article  Google Scholar 

  • Fischetti M, Salvagnin D, Zanette A (2009) Fast approaches to improve the robustness of a railway timetable. Transp Sci 43(3):321–335

    Article  Google Scholar 

  • Gattermann P, Harbering J, Schöbel A (2015) Generation of line pools. In: Conference on advanced systems in public transport

  • Goerigk M, Harbering J, Schöbel A (2016) LinTim—integrated optimization in public transportation. Homepage. see http://lintim.math.uni-goettingen.de/

  • Goverde RMP (1998) Max-plus algebra approach to railway timetable design. In: The 1998 6th international conference on computer aided design, manufacture and operation in the railway and other advanced mass transit systems, pp 339–350

  • Goerigk M, Schöbel A (2013) Improving the modulo simplex algorithm for large-scale periodic timetabling. Comput Oper Res 40(5):1363–1370

    Article  Google Scholar 

  • Goerigk M, Schöbel A (2014) Recovery-to-optimality: a new two-stage approach to robustness with an application to aperiodic timetabling. Comput Oper Res 52:1–15

    Article  Google Scholar 

  • Goerigk M, Schachtebeck M, Schöbel A (2013) Evaluating line concepts using travel times and robustness. Public Transp 5(3):267–284

    Article  Google Scholar 

  • Joncour C, Michel S, Sadykov R, Sverdlov D, Vanderbeck F (2010) Column generation based primal heuristics. Electron Notes Discret Math 36:695–702

    Article  Google Scholar 

  • Kirchhoff F, Kolonko M (2015) Modelling delay propagation in railway networks using closed family of distributions. Technical Report

  • Kliewer N, Suhl L (2011) A note on the online nature of the railway delay management problem. Networks 57(1):28–37

    Article  Google Scholar 

  • Lamorgese L, Mannino C (2015) An exact decomposition approach for the real-time train dispatching problem. Oper Res 63(1):48–64

    Article  Google Scholar 

  • Liebchen C (2007) Periodic timetable optimization in public transport. Springer, Berlin

    Book  Google Scholar 

  • Lusby RM, Larsen J, Ehrgott M, Ryan D (2011) Railway track allocation: models and methods. OR Spectr 33(4):843–883

    Article  Google Scholar 

  • Liebchen C, Möhring RH (2007) The modeling power of the periodic event scheduling problem: railway timetables-and beyond. In: Geraets F, Kroon L, Schöbel A, Wagner D, Zaroliagis CD (eds) Algorithmic methods for railway optimization. Springer, Berlin, pp 3–40

    Chapter  Google Scholar 

  • Makovsek D, Benezech V, Perkins S (2015) Efficiency in railway operations and infrastructure management. In: International transport forum discussion papers, OECD

  • Montigel M (2009) Operations control system in the lotschberg base tunnel. Eur Rail Technol Rev 49:42–44

    Google Scholar 

  • Nachtigall K (1998) Periodic network optimization and fixed interval timetables. Deutsches Zentrum für Luft-und Raumfahrt, Institut für Flugführung, Braunschweig

    Google Scholar 

  • Naveh B, Sichi J, Kinable J, Michail D (2017) An implementation of K-Shortest Path Algorithm (Java Version). https://github.com/yan-qi/k-shortestpaths-java-version. Accessed 19 Jan 2017

  • Optimization Dash (2007) Xpress-optimizer reference manual. Dash Optimization Ltd., Englewood Cliffs

  • Qi Y (2017) JGraphT. www.jgrapht.org. Accessed 19 Jan 2017

  • Schachtebeck M (2010) Delay management in public transportation: capacities, robustness, and integration. PhD thesis, Universität Göttingen

  • Schmidt M (2014) Integrating routing decisions in network problems. Springer, Berlin

    Book  Google Scholar 

  • Schöbel A (2001) A model for the delay management problem based on mixed-integer-programming. Electron Notes Theor Comput Sci 50(1):1–10

    Article  Google Scholar 

  • Schöbel A (2012) Line planning in public transportation: models and methods. OR Spectr 34(3):491–510

    Article  Google Scholar 

  • Schöbel A, Scholl S (2006) Line planning with minimal travel time. In: 5th workshop on algorithmic methods and models for optimization of railways, number 06901 in Dagstuhl Seminar Proceedings

  • Schöbel A, Schwarze S (2006) A game-theoretic approach to line planning. In: 6th workshop on algorithmic methods and models for optimization of railways, number 06002 in Dagstuhl Seminar proceedings

  • Schachtebeck M, Schöbel A (2010) To wait or not to wait-and who goes first? delay management with priority decisions. Transp Sci 44(3):307–321

    Article  Google Scholar 

  • Schmidt M, Schöbel A (2010) The complexity of integrating routing decisions in public transportation models. In: Proceedings of ATMOS10, vol 14. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik

  • Schöbel A, Schwarze S (2013) Finding delay-resistant line concepts using a game-theoretic approach. Netnomics 14(3):95–117

    Article  Google Scholar 

  • Siebert M, Goerigk M (2013) An experimental comparison of periodic timetabling models. Comput Oper Res 40(10):2251–2259

    Article  Google Scholar 

  • Yen JY (1971) Finding the k shortest loopless paths in a network. Manag Sci 17(11):712–716

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonas Harbering.

Additional information

The author is partially supported by the European Union Seventh Framework Programme (FP7-PEOPLE- 2009-IRSES) under Grant Number 246647 with the New Zealand Government (Project OptALI). Also, I thank the Simulationswissenschaftliches Zentrum Clausthal-Göttingen (SWZ) for financial support.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harbering, J. Delay resistant line planning with a view towards passenger transfers. TOP 25, 467–496 (2017). https://doi.org/10.1007/s11750-017-0436-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11750-017-0436-5

Keywords

Mathematics Subject Classification

Navigation