Skip to main content

Advertisement

Log in

The class of microarray games and the relevance index for genes

  • Original Paper
  • Published:
TOP Aims and scope Submit manuscript

Abstract

Nowadays, microarray technology is available to generate a huge amount of information on gene expression. This information must be statistically processed and analyzed, in particular, to identify those genes which are useful for the diagnosis and prognosis of specific diseases. We discuss the possibility of applying game-theoretical tools, like the Shapley value, to the analysis of gene expression data.

Via a “truncation” technique, we build a coalitional game whose aim is to stress the relevance (“sufficiency”) of groups of genes for the specific disease we are interested in. The Shapley value of this game is used to select those genes which deserve further investigation. To justify the use of the Shapley value in this context, we axiomatically characterize it using properties with a genetic interpretation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alon U, Barkai N, Notterman DA, Gish K, Ybarra S, Mack D, Levine AJ (1999) Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissue probed by oligonucleotide arrays. Proc Natl Acad Sci USA 96:6745–6750

    Article  Google Scholar 

  • Banzhaf JF III (1965) Weighted voting doesn’t work: a game theoretic approach. Rutgers Law Rev 19:317–343

    Google Scholar 

  • Becquet C, Blachon S, Jeudy B, Boulicaut JG, Gandrillon O (2002) Strong-association-rule mining for large-scale gene-expression data analysis: a case study on human SAGE data. Genome Biol 3(12)

  • Bower JM, Bolouri H (eds) (2001) Computational modelling of genetic and biochemical networks computational molecular biology series. MIT Press, Cambridge

    Google Scholar 

  • Branzei R, Moretti S, Norde H, Tijs S (2004) The P-value for cost sharing in minimum cost spanning tree situations. Theory Decis 56:47–61

    Article  Google Scholar 

  • Dudoit S, Fridlyand J (2003) Classification in microarray experiments. In: Speed TP (ed) Statistical analysis of gene expression microarray data. Chapman & Hall/CRC, London/Boca Raton, pp 93–158

    Google Scholar 

  • Dudoit S, Yang YH, Luu P, Speed TP (2001) Normalization for cDNA microarray data. In: Bittner ML, Chen Y, Dorsel AN, Dougherty ER (eds) Microarrays: optical technologies and informatics. Proceedings of SPIE, vol 4266, pp 141–152

  • Fragnelli V, Moretti S (2007) A game theoretical approach to the classification problem in gene expression data analysis. Comput Math Appl, doi:10/1016/j.camwa.2006.12.088

    Google Scholar 

  • Fujarewicz K, Wiench M (2003) Selecting differentially expressed genes for colon tumor classification. Int J Appl Math Comput Sci 13(3):327–335

    Google Scholar 

  • Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J, Hornik K, Hothorn T, Huber W, Iacus S, Irizarry R, Leisch F, Li C, Maechler M, Rossini AJ, Sawitzki G, Smith C, Smyth G, Tierney L, Yang JYH, Zhang J (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5:80, http://genomebiology.com/2004/5/10/R80

    Article  Google Scholar 

  • Golub T, Slonim D, Tamayo P, Huard C, Gaasenbeek M, Mesirov J, Coller H, Loh M, Downing J, Caligiuri M, Bloomfield C, Lander E (1999) Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286:531–537

    Article  Google Scholar 

  • Grabisch M, Roubens M (1999) An axiomatic approach to the concept of interaction among players in cooperative games. Int J Game Theory 28:547–565

    Article  Google Scholar 

  • Jager J (2006) Deriving small diagnostic biomarker panels from genome wide. PhD Dissertation, Max Planck Institute for Molecular Genetics

  • Kalai E, Samet D (1988) Weighted Shapley values. In: Roth A (ed) The Shapley value, essays in honor of Lloyd S. Shapley. Cambridge University Press, Cambridge, pp 83–100

    Google Scholar 

  • Kasahara M, Takahashi Y, Nagata T, Asai S, Eguchi T, Ishii Y, Fujii M, Ishikawa K (2000) Thymidylate synthase expression correlates closely with E2F1 expression in colon cancer. Clin Cancer Res 6:2707–2711

    Google Scholar 

  • Kaufman A, Kupiec M, Ruppin E (2004) Multi-knockout genetic network analysis: the Rad6 example. In: Proceedings of the 2004 IEEE computational systems bioinformatics conference (CSB’04), August 16–19, 2004, Standford, California

  • Keinan A, Sandbank B, Hilgetag CC, Meilijson I, Ruppin E (2004) Fair attribution of functional contribution in artificial and biological networks. Neural Comput 16(9):1887–1915

    Article  Google Scholar 

  • Moler EJ, Chow, ML, Mian IS (2000) Analysis of molecular profile data using generative and discriminative methods. Physiol Genomics 4:109–126

    Google Scholar 

  • Moretti S (2006a) Game Theory applied to gene expression analysis. PhD Dissertation, University of Genoa, Italy

  • Moretti S (2006b) Minimum cost spanning tree games and gene expression data analysis. In: ACM international conference proceeding series, p 199

  • Owen G (1995) Game theory, 3rd edn. Academic, San Diego

    Google Scholar 

  • Parmigiani G, Garret ES, Irizarry RA, Scott SL (2003) The analysis of gene expression data: an overview of methods and software. In: Parmigiani G, Garret ES, Irizarry RA, Zeger SL (eds) The analysis of gene expression data: methods and software. Springer, New York

    Google Scholar 

  • R Development Core Team (2004) R: a language and environment for statistical. R foundation for statistical computing, Vienna, Austria, 2004, ISBN 3-900051-00-3, http://www.R-project.org

  • Ramamurthy KG (1990) Coherent structures and simple games. Kluwer Academic, Dordrecht

    Google Scholar 

  • Shapley LS (1953) A value for n-person games. In: Kuhn HW, Tucker AW (eds) Contributions to the theory of games II. Annals of mathematics studies, vol 28. Princeton University Press, Princeton, pp 307–317

    Google Scholar 

  • Shapley LS, Shubik M (1954) A method for evaluating the distribution of power in a committee system. Am Political Sci Rev 48:787–792

    Article  Google Scholar 

  • Smith K, Speed T (2003) Normalization of cDNA microarray data. Methods 31:265–273

    Article  Google Scholar 

  • Storey JD, Tibshirani R (2003) SAM thresholding and false discovery rates for detecting differential gene expression in DNA microarrays. In: Parmigiani G, Garret ES, Irizarry RA, Zeger SL (eds) The analysis of gene expression data: methods and software. Springer, New York

    Google Scholar 

  • Su Y, Murali TM, Pavlovic V, Schaffer M, Kasif S (2003) RankGene: identification of diagnostic genes based on expression data. Bioinformatics 19(12):1578–1579

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Moretti.

Additional information

The authors are grateful to two anonymous referees for their extremely helpful comments.

An earlier version of this paper was presented at the VI Spanish Meeting on Game Theory and Practice, July 12–14, 2004, Elche, Spain.

S. Moretti gratefully acknowledges the financial support of the EU project NewGeneris, European Union 6th FP (FOOD-CT-2005-016320).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moretti, S., Patrone, F. & Bonassi, S. The class of microarray games and the relevance index for genes. TOP 15, 256–280 (2007). https://doi.org/10.1007/s11750-007-0021-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11750-007-0021-4

Keywords

Mathematics Subject Classification (2000)

Navigation