Skip to main content
Log in

Is there a role for biomarkers in thoracic aortic aneurysm disease?

  • SPECIAL EDITION
  • Controversies in Surgery for Thoracic Aorta
  • Published:
General Thoracic and Cardiovascular Surgery Aims and scope Submit manuscript

Abstract

Thoracic aortic aneurysm (TAA) represents a major cause of mortality and morbidity in Western countries. The natural history of TAA is indolent, with patients usually being asymptomatic until a catastrophic event such as rupture or dissection ensues. As such, early diagnosis is crucial and the search is ongoing for a biomarker that can indicate the presence of TAA with sufficient accuracy to act as a screening tool. To date, no such marker has been developed for the diagnosis of non-familial or ‘sporadic’ TAA. However, our increased understanding of the pathogenesis of both familial and sporadic TAA has suggested potential candidates for diagnostic biomarkers. Many markers/pathways have been shown to have differential activity levels or expression in the aortic tissue of TAA. However, priority is given to markers that have shown differential levels in blood plasma, as blood tests represent the easiest route for mass screening for TAA. This review aims to evaluate the efficacy of clinical tests already in use in diagnosing TAA, explore novel proposed biomarkers and identify key areas of future interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Olsson C, Thelin S, Stahle E, Ekbom A, Granath F. Thoracic aortic aneurysm and dissection: increasing prevalence and improved outcomes reported in a nationwide population-based study of more than 14,000 cases from 1987 to 2002. Circulation. 2006;114:2611–8.

    Article  PubMed  Google Scholar 

  2. Wilson JMG, Jungner G. Principles and practice of screening for disease. Public health papers, No. 34. Geneva: World Health Organization; 1968. pp 26–7.

  3. Ziganshin BA, Elefteriades JA. Guilt by association: a paradigm for detection of silent aortic disease. Ann Cardiothorac Surg. 2016;5:174 – 87.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Black KM, Masuzawa A, Hagberg RC, Khabbaz KR, Trovato ME, Rettagliati VM, et al. Preliminary biomarkers for identification of human ascending thoracic aortic aneurysm. J Am Heart Assoc. 2013;2:e000138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Elefteriades JA, Farkas EA. Thoracic aortic aneurysm clinically pertinent controversies and uncertainties. J Am Coll Cardiol. 2010;55:841–57.

    Article  CAS  PubMed  Google Scholar 

  6. Ramanath VS, Oh JK, Sundt TM 3rd, Eagle KA. Acute aortic syndromes and thoracic aortic aneurysm. Mayo Clin Proc. 2009;84:465–81.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Trimarchi S, Sangiorgi G, Sang X, Rampoldi V, Suzuki T, Eagle KA, et al. In search of blood tests for thoracic aortic diseases. Ann Thorac Surg. 2010;90:1735–42.

    Article  PubMed  Google Scholar 

  8. Golledge J, Tsao PS, Dalman RL, Norman PE. Circulating markers of abdominal aortic aneurysm presence and progression. Circulation. 2008;118:2382–92.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lippi G, Bonfanti L, Saccenti C, Cervellin G. Causes of elevated D-dimer in patients admitted to a large urban emergency department. Eur J Intern Med. 2014;25:45–8.

    Article  CAS  PubMed  Google Scholar 

  10. Goldhaber SZ, Simons GR, Elliott CG, Haire WD, Toltzis R, Blacklow SC, et al. Quantitative plasma D-dimer levels among patients undergoing pulmonary angiography for suspected pulmonary embolism. JAMA. 1993;270:2819–22.

    Article  CAS  PubMed  Google Scholar 

  11. Sidloff DA, Stather PW, Choke E, Bown MJ, Sayers RD. A systematic review and meta-analysis of the association between markers of hemostasis and abdominal aortic aneurysm presence and size. J Vasc Surg. 2014;59:528–35.

    Article  PubMed  Google Scholar 

  12. Suzuki T, Distante A, Zizza A, Trimarchi S, Villani M, Salerno Uriarte JA, et al. Diagnosis of acute aortic dissection by D-dimer: the international registry of acute aortic dissection substudy on biomarkers (IRAD-Bio) experience. Circulation. 2009;119:2702–7.

    Article  PubMed  Google Scholar 

  13. Eggebrecht H, Naber CK, Bruch C, Kroger K, von Birgelen C, Schmermund A, et al. Value of plasma fibrin D-dimers for detection of acute aortic dissection. J Am Coll Cardiol. 2004;44:804–9.

    Article  CAS  PubMed  Google Scholar 

  14. Yuan SM, Shi YH, Wang JJ, Lu FQ, Gao S. Elevated plasma D-dimer and hypersensitive C-reactive protein levels may indicate aortic disorders. Rev Bras Cir Cardiovasc. 2011;26:573 – 81.

    Article  PubMed  Google Scholar 

  15. Lindholt JS, Jorgensen B, Shi GP, Henneberg EW. Relationships between activators and inhibitors of plasminogen, and the progression of small abdominal aortic aneurysms. Eur J Vasc Endovasc Surg. 2003;25:546–51.

    Article  CAS  PubMed  Google Scholar 

  16. Vainas T, Lubbers T, Stassen FR, Herngreen SB, van Dieijen-Visser MP, Bruggeman CA, et al. Serum C-reactive protein level is associated with abdominal aortic aneurysm size and may be produced by aneurysmal tissue. Circulation. 2003;107:1103–5.

    Article  PubMed  Google Scholar 

  17. Elkind MS, Sciacca R, Boden-Albala B, Homma S, Di Tullio MR. Leukocyte count is associated with aortic arch plaque thickness. Stroke. 2002;33:2587–92.

    Article  PubMed  Google Scholar 

  18. Ross R. Atherosclerosis–an inflammatory disease. N Engl J Med. 1999;340:115–26.

    Article  CAS  PubMed  Google Scholar 

  19. Tribouilloy CM, Peltier M, Iannetta Peltier MC, Trojette F, Andrejak M, Lesbre JP. Plasma homocysteine and severity of thoracic aortic atherosclerosis. Chest. 2000;118:1685–9.

    Article  CAS  PubMed  Google Scholar 

  20. Cao H, Hu X, Zhang Q, Li J, Wang J, Shao Y, et al. Homocysteine level and risk of abdominal aortic aneurysm: a meta-analysis. PLoS One. 2014;9:e85831.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sbarouni E, Georgiadou P, Analitis A, Chaidaroglou A, Marathias A, Degiannis D, et al. High homocysteine and low folate concentrations in acute aortic dissection. Int J Cardiol. 2013;168:463–6.

    Article  PubMed  Google Scholar 

  22. Giusti B, Porciani MC, Brunelli T, Evangelisti L, Fedi S, Gensini GF, et al. Phenotypic variability of cardiovascular manifestations in Marfan Syndrome. Possible role of hyperhomocysteinemia and C677T MTHFR gene polymorphism. Eur Heart J. 2003;24:2038–45.

    Article  CAS  PubMed  Google Scholar 

  23. Thota D, Zanoni S, Mells C, Auten JD. Acute, proximal aortic dissection with negative D-Dimer assay and normal portable chest radiograph: a case report. Mil Med. 2015;180:e164–7.

    Article  PubMed  Google Scholar 

  24. Tsamis A, Krawiec JT, Vorp DA. Elastin and collagen fibre microstructure of the human aorta in ageing and disease: a review. J R Soc Interface. 2013;10:20121004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Toumpoulis IK, Oxford JT, Cowan DB, Anagnostopoulos CE, Rokkas CK, Chamogeorgakis TP, et al. Differential expression of collagen type V and XI alpha-1 in human ascending thoracic aortic aneurysms. Ann Thorac Surg. 2009;88:506–13.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Arnaud L, Haroche J, Limal N, Toledano D, Gambotti L, Costedoat Chalumeau N, et al. Takayasu arteritis in France: a single-center retrospective study of 82 cases comparing white, North African, and black patients. Medicine (Baltimore). 2010;89:1–17.

    Article  PubMed  Google Scholar 

  27. Wilson KA, Lindholt JS, Hoskins PR, Heickendorff L, Vammen S, Bradbury AW. The relationship between abdominal aortic aneurysm distensibility and serum markers of elastin and collagen metabolism. Eur J Vasc Endovasc Surg. 2001;21:175–8.

    Article  CAS  PubMed  Google Scholar 

  28. Lindholt JS, Heickendorff L, Vammen S, Fasting H, Henneberg EW. Five-year results of elastin and collagen markers as predictive tools in the management of small abdominal aortic aneurysms. Eur J Vasc Endovasc Surg. 2001;21:235–40.

    Article  CAS  PubMed  Google Scholar 

  29. Ramirez F, Sakai LY. Biogenesis and function of fibrillin assemblies. Cell Tissue Res. 2010;339:71–82.

    Article  CAS  PubMed  Google Scholar 

  30. Ramachandra CJ, Mehta A, Guo KW, Wong P, Tan JL, Shim W. Molecular pathogenesis of Marfan syndrome. Int J Cardiol. 2015;187:585 – 91.

    Article  PubMed  Google Scholar 

  31. Marshall LM, Carlson EJ, O’Malley J, Snyder CK, Charbonneau NL, Hayflick SJ, et al. Thoracic aortic aneurysm frequency and dissection are associated with fibrillin-1 fragment concentrations in circulation. Circ Res. 2013;113:1159–68.

    Article  CAS  PubMed  Google Scholar 

  32. Vine N, Powell JT. Metalloproteinases in degenerative aortic disease. Clin Sci (Lond). 1991;81:233–9.

    Article  CAS  Google Scholar 

  33. Dollery CM, McEwan JR, Henney AM. Matrix metalloproteinases and cardiovascular disease. Circ Res. 1995;77:863–8.

    Article  CAS  PubMed  Google Scholar 

  34. Rabkin SW. The role matrix metalloproteinases in the production of aortic aneurysm. Prog Mol Biol Transl Sci. 2017;147:239–65.

    Article  PubMed  Google Scholar 

  35. Koullias GJ, Ravichandran P, Korkolis DP, Rimm DL, Elefteriades JA. Increased tissue microarray matrix metalloproteinase expression favors proteolysis in thoracic aortic aneurysms and dissections. Ann Thorac Surg. 2004;78:2106–10. (discussion 10–1).

    Article  PubMed  Google Scholar 

  36. Sangiorgi G, Trimarchi S, Mauriello A, Righini P, Bossone E, Suzuki T, et al. Plasma levels of metalloproteinases-9 and -2 in the acute and subacute phases of type A and type B aortic dissection. J Cardiovasc Med (Hagerstown). 2006;7:307–15.

    Article  Google Scholar 

  37. Ikonomidis JS, Ivey CR, Wheeler JB, Akerman AW, Rice A, Patel RK, et al. Plasma biomarkers for distinguishing etiologic subtypes of thoracic aortic aneurysm disease. J Thorac Cardiovasc Surg. 2013;145:1326–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lu H, Rateri DL, Cassis LA, Daugherty A. The role of the renin-angiotensin system in aortic aneurysmal diseases. Curr Hypertens Rep. 2008;10:99–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Habashi JP, Judge DP, Holm TM, Cohn RD, Loeys BL, Cooper TK, et al. Losartan, an AT1 antagonist, prevents aortic aneurysm in a mouse model of Marfan syndrome. Science. 2006;312:117–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rateri DL, Davis FM, Balakrishnan A, Howatt DA, Moorleghen JJ, O’Connor WN, et al. Angiotensin II induces region-specific medial disruption during evolution of ascending aortic aneurysms. Am J Pathol. 2014;184:2586–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Huang LG, Liu DB, Wang HQ. Angiotensin-converting enzyme I/D polymorphism and aortic aneurysm risk: a meta-analysis. Interact Cardiovasc Thorac Surg. 2014;19:782–7.

    Article  PubMed  Google Scholar 

  42. Li Y, Hu J, Qian H, Gu J, Meng W, Zhang EY. Novel findings: Expression of angiotensin-converting enzyme and angiotensin-converting enzyme 2 in thoracic aortic dissection and aneurysm. J Renin Angiotensin Aldosterone Syst. 2015;16:1130–4.

    Article  CAS  PubMed  Google Scholar 

  43. Liew CC, Ma J, Tang HC, Zheng R, Dempsey AA. The peripheral blood transcriptome dynamically reflects system wide biology: a potential diagnostic tool. J Lab Clin Med. 2006;147:126–32.

    Article  CAS  PubMed  Google Scholar 

  44. Coady MA, Davies RR, Roberts M, Goldstein LJ, Rogalski MJ, Rizzo JA, et al. Familial patterns of thoracic aortic aneurysms. Arch Surg. 1999;134:361–7.

    Article  CAS  PubMed  Google Scholar 

  45. Milewicz DM, Regalado E. Heritable Thoracic Aortic Disease Overview. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Mefford HC et al, editors. GeneReviews(R). Seattle: University of Washington; 1993. (GeneReviews is a registered trademark of the University of Washington, Seattle. All rights reserved).

    Google Scholar 

  46. Pannu H, Fadulu VT, Chang J, Lafont A, Hasham SN, Sparks E, et al. Mutations in transforming growth factor-beta receptor type II cause familial thoracic aortic aneurysms and dissections. Circulation. 2005;112:513–20.

    Article  CAS  PubMed  Google Scholar 

  47. Pannu H, Tran-Fadulu V, Papke CL, Scherer S, Liu Y, Presley C, et al. MYH11 mutations result in a distinct vascular pathology driven by insulin-like growth factor 1 and angiotensin II. Hum Mol Genet. 2007;16:2453–62.

    Article  CAS  PubMed  Google Scholar 

  48. Renard M, Callewaert B, Baetens M, Campens L, MacDermot K, Fryns JP, et al. Novel MYH11 and ACTA2 mutations reveal a role for enhanced TGFbeta signaling in FTAAD. Int J Cardiol. 2013;165:314–21.

    Article  PubMed  Google Scholar 

  49. Guo DC, Pannu H, Tran-Fadulu V, Papke CL, Yu RK, Avidan N, et al. Mutations in smooth muscle alpha-actin (ACTA2) lead to thoracic aortic aneurysms and dissections. Nat Genet. 2007;39:1488–93.

    Article  CAS  PubMed  Google Scholar 

  50. Kim JH, Na CY, Choi SY, Kim HW, Du Kim Y, Kwon JB, et al. Integration of gene-expression profiles and pathway analysis in ascending thoracic aortic aneurysms. Ann Vasc Surg. 2010;24:538–49.

    Article  PubMed  Google Scholar 

  51. Sakai H, Suzuki S, Mizuguchi T, Imoto K, Yamashita Y, Doi H, et al. Rapid detection of gene mutations responsible for non-syndromic aortic aneurysm and dissection using two different methods: resequencing microarray technology and next-generation sequencing. Hum Genet. 2012;131:591–9.

    Article  CAS  PubMed  Google Scholar 

  52. Absi TS, Sundt TM 3rd, Tung WS, Moon M, Lee JK, Damiano RR Jr, et al. Altered patterns of gene expression distinguishing ascending aortic aneurysms from abdominal aortic aneurysms: complementary DNA expression profiling in the molecular characterization of aortic disease. J Thorac Cardiovasc Surg. 2003;126:344–57 (discission 57).

    Article  CAS  PubMed  Google Scholar 

  53. Isselbacher EM, Lino Cardenas CL, Lindsay ME. Hereditary influence in thoracic aortic aneurysm and dissection. Circulation. 2016;133:2516–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. LeMaire SA, McDonald ML, Guo DC, Russell L, Miller CC 3rd, Johnson RJ, et al. Genome-wide association study identifies a susceptibility locus for thoracic aortic aneurysms and aortic dissections spanning FBN1 at 15q21.1. Nat Genet. 2011;43:996–1000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gillis E, Van Laer L, Loeys BL. Genetics of thoracic aortic aneurysm: at the crossroad of transforming growth factor-beta signaling and vascular smooth muscle cell contractility. Circ Res. 2013;113:327–40.

    Article  CAS  PubMed  Google Scholar 

  56. Suzuki T, Trimarchi S, Sawaki D, Grassi V, Costa E, Rampoldi V, et al. Circulating transforming growth factor-beta levels in acute aortic dissection. J Am Coll Cardiol. 2011;58:775.

    Article  PubMed  Google Scholar 

  57. Li T, Lv Z, Jing JJ, Yang J, Yuan Y. Matrix metalloproteinase family polymorphisms and the risk of aortic aneurysmal diseases: a systematic review and meta-analysis. Clin Genet. 2017. https://doi.org/10.1111/cge.13050.

  58. Wang Y, Barbacioru CC, Shiffman D, Balasubramanian S, Iakoubova O, Tranquilli M, et al. Gene expression signature in peripheral blood detects thoracic aortic aneurysm. PLoS One. 2007;2:e1050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kim HW, Stansfield BK. Genetic and epigenetic regulation of aortic aneurysms. BioMed Res Int. 2017;2017:7268521.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamad Bashir.

Ethics declarations

Conflict of interest

The authors do not wish to make any disclosures.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balmforth, D., Harky, A., Adams, B. et al. Is there a role for biomarkers in thoracic aortic aneurysm disease?. Gen Thorac Cardiovasc Surg 67, 12–19 (2019). https://doi.org/10.1007/s11748-017-0855-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11748-017-0855-0

Keywords

Navigation