Skip to main content
Log in

Current status of brain protection during surgery for congenital cardiac defect

  • Current Topics Review Article
  • Published:
General Thoracic and Cardiovascular Surgery Aims and scope Submit manuscript

Abstract

The long-term neurodevelopmental outcome has been a great concern for cardiac surgeons although it is still unclear. There are some risks regarding the neurological and neuropsychological deficits before, during and after cardiovascular surgery. Current status of brain protection during congenital heart surgery could be reported. The incidence of neurologic outcome and the appropriate CPB strategy for brain protection are stated, and the latest data of neurodevelopmental outcome after pediatric cardiac surgery are clarified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Masuda M, Kuwano H, Okumura M, Amano J, Arai H, Endo S, Doki Y, Kobayashi J, Motomura N, Nishida H, Saiki Y, Tanaka F, Tanemoto K, Toh Y, Yokomise H. Thoracic and cardiovascular surgery in Japan during 2012 Annual report by The Japanese Association for Thoracic Surgery. Gen Thorac Cardiovasc Surg. 2014;62:734–64.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Newman SP, Stygall J. Neuropsychological outcome following cardiac surgery. In: The brain and cardiac surgery. 2000. p 21–50.

  3. Ferry PC. Neurologic sequelae of open-heart surgery in children. Am J Dis Child. 1990;144:369–73.

    Article  PubMed  CAS  Google Scholar 

  4. Menache CC, du Plessis AJ, Wessel DL, Jonas RA, Newburger JW. Current incidence of acute neurologic complications after open-heart operations in children. Ann Thorac Surg. 2002;73:1752–8.

    Article  PubMed  Google Scholar 

  5. Trittenwein G, Nardi A, Pansi H, Golej J, Burda G, Hermon M, Boigner H, Wollenek G. Verein zur Durchführung wissenschaftlichter Forschung auf dem Gebeit der Neonatologie und Pädiatrischen Intensivmedizin. Early postoperative prediction of cerebral damage after pediatric cardiac surgery. Ann Thorac Surg. 2003;76:576–80.

    Article  PubMed  Google Scholar 

  6. Miyata H, Motomura N, Yozu R, Kyo S, Takamoto S, Japan Cardiovascular Surgery Database. Cardiovascular surgery risk prediction from the patient’s perspective. J Thorac Cardiovasc Surg. 2011;142:e71–6.

    Article  PubMed  Google Scholar 

  7. Looney CB, Smith JK, Merck LH, et al. Intracranial hemorrhage in asymptomatic neonates: prevalence on MR images and relationship to obstetric and neonatal risk factors. Radiology. 2007;242:535–41.

    Article  PubMed  Google Scholar 

  8. Sakamoto T, Kurosawa H, Shin’oka T, Nomura M, Morino R. Solution to improve the safety in pediatric cardiopulmonary bypass. Prevention and current status of postoperative neurologic complication. Pediatr Cardiol Card Surg. 2006; Suppl.

  9. Sakamoto T, Kimura M, Toyoda Y, Harada Y. Current status of acute neurologic complication in pediatric open-heart surgery. Gen Thorac Cardiovasc Surg. 2008; Suppl.

  10. Sakamoto T, Kosaka Y, Shimada M, Hayakawa M, Yasukochi S, Takigiku K, Tazawa S, Harada Y. Long-term neurodevelopmental outcome after pediatric open-heart surgery—for the less invasive cardiac surgery. Jpn J Cardiovasc Surg. 2013; Suppl.

  11. Gibbon JH. Application of mechanical heart and lung apparatus to cardiac surgery. Minn Med. 1954;37:171–85.

    PubMed  Google Scholar 

  12. Ichikawa H, Yagihara T, Kishimoto H, Isobe F, Yamamoto F, Nishigaki K, Matsuki O, Fujita T. Extent of aortopulmonary collateral blood flow as a risk factor for Fontan operations. Ann Thorac Surg. 1995;59:433–7.

    Article  PubMed  CAS  Google Scholar 

  13. Bailey LL. Deep hypothermia and total circulatory arrest for cardiac surgery. In: Yingkai W, Peters RM, editors. International practice in cardiothoracic surgery. Beijing: Science Press; 1985.

    Google Scholar 

  14. Howe R. Boston Children’s Hospital, perfusion protocols and perfusion equipment. In: Jonas RA, Eltiott MJ, editors. Cardiopulmonary bypass in neonates, infants and young children. Oxford: Butterworth-Heinemann; 1994. p. 297–300.

    Google Scholar 

  15. Nicolas F, Daniel JP, Bruniaux J, Serraf A, Lacour-Gayet F, Planche C. Conventional cardiopulmonary bypass in neonates: a physiological approach—10 years of experience at Marie-Lannelongue Hospital. Perfusion. 1994;9:41–8.

    Article  PubMed  CAS  Google Scholar 

  16. Shin’oka T, Shum-Tim D, Jonas RA, Lidov HG, Laussen PC, Miura T, du Plessis A. Higher hematocrit improves cerebral outcome after deep hypothermic circulatory arrest. J Thorac Cardiovasc Surg. 1996;112:1610–20.

    Article  PubMed  Google Scholar 

  17. Sakamoto T, Hatsuoka S, Stock UA, Duebener LF, Lidov HG, Holmes GL, Sperling JS, Munakata M, Laussen PC, Jonas RA. Prediction of safe duration of hypothermic circulatory arrest by near-infrared spectroscopy. J Thorac Cardiovasc Surg. 2001;122:339–50.

    Article  PubMed  CAS  Google Scholar 

  18. Duebener LF, Sakamoto T, Hatsuoka S, Stamm C, Zurakowski D, Vollmar B, Menger MD, Schäfers HJ, Jonas RA. Effects of hematocrit on cerebral microcirculation and tissue oxygenation during deep hypothermic bypass. Circulation. 2001;104(12 Suppl 1):I260–4.

    PubMed  CAS  Google Scholar 

  19. Jonas RA, Wypij D, Roth SJ, Bellinger DC, Visconti KJ, du Plessis AJ, Goodkin H, Laussen PC, Farrell DM, Bartlett J, McGrath E, Rappaport LJ, Bacha EA, Forbess JM, del Nido PJ, Mayer JE Jr, Newburger JW. The influence of hemodilution on outcome after hypothermic cardiopulmonary bypass: results of a randomized trial in infants. J Thorac Cardiovasc Surg. 2003;126:1765–74.

    Article  PubMed  Google Scholar 

  20. Newburger JW, Jonas RA, Soul J, Kussman BD, Bellinger DC, Laussen PC, Robertson R, Mayer JE Jr, del Nido PJ, Bacha EA, Forbess JM, Pigula F, Roth SJ, Visconti KJ, du Plessis AJ, Farrell DM, McGrath E, Rappaport LA, Wypij D. Randomized trial of hematocrit 25% versus 35% during hypothermic cardiopulmonary bypass in infant heart surgery. J Thorac Cardiovasc Surg. 2008;135:347–54.

    Article  PubMed  Google Scholar 

  21. Koide M, Yamazaki A, Watanabe K, Matsuo T, Sugiura T, Kitamoto N, Kamiya N. Effect of non-hemic CPB priming with extreme priming volume. Pediatr Cardiol Card Surg. 2006; Suppl.

  22. Maeda M, Iwase J, Ukai K, Sasaki S, Nagashima M, Yasuda T, Numaguchi A, Adachi N. Long-term neurologic outcome after non-hemic CPB in infants—VSD cases in multicenter study. Pediatr Cardiol Card Surg. 2006; Suppl.

  23. Kawashima Y, Yamamoto Z, Manabe H. Safe limits of hemodilution in cardiopulmonary bypass. Surgery. 1974;76:391–7.

    PubMed  CAS  Google Scholar 

  24. Miura T, Sakamoto T, Kobayashi M, Shin’oka T, Kurosawa H. Hemodilutional anemia impairs neurologic outcome after cardiopulmonary bypass in a piglet model. J Thorac Cardiovasc Surg. 2007;133:29–36.

    Article  PubMed  Google Scholar 

  25. Ranucci M, Carboni G, Cotza M, Bianchi P, Di Dedda U, Aloisio T, Surgical and Clinical Outcome Research (SCORE) Group. Hemodilution on cardiopulmonary bypass as a determinant of early postoperative hyperlactatemia. PLoS One. 2015;18(10):e0126939.

    Article  Google Scholar 

  26. Swan H. The importance of acid–base management for cardiac and cerebral preservation during open heart operations. Surg Gynecol Obstet. 1984;158:391–414.

    PubMed  CAS  Google Scholar 

  27. Burrows FA. Con: pH-stat management of blood gases is preferable to alpha-stat in patients undergoing brain cooling for cardiac surgery. J Cardiothorac Vasc Anesth. 1995;9:219–21.

    Article  PubMed  CAS  Google Scholar 

  28. Priestley MA, Golden JA, O’Hara IB, McCann J, Kurth CD. Comparison of neurologic outcome after deep hypothermic circulatory arrest with alpha-stat and pH-stat cardiopulmonary bypass in newborn pigs. J Thorac Cardiovasc Surg. 2001;121:336–43.

    Article  PubMed  CAS  Google Scholar 

  29. Aoki M, Nomura F, Stromski ME, Tsuji MK, Fackler JC, Hickey PR, Holtzman DH, Jonas RA. Effects of pH on brain energetics after hypothermic circulatory arrest. Ann Thorac Surg. 1993;55:1093–103.

    Article  PubMed  CAS  Google Scholar 

  30. Hiramatsu T, Miura T, Forbess JM, du Plessis A, Aoki M, Nomura F, Holtzman D, Jonas RA. pH strategies and cerebral energetics before and after circulatory arrest. J Thorac Cardiovasc Surg. 1995;109:948–57.

    Article  PubMed  CAS  Google Scholar 

  31. Sakamoto T, Zurakowski D, Duebener LF, Hatsuoka S, Lidov HGW, Holmes GL, Stock UA, Laussen PC, Jonas RA. Combination of alpha-stat strategy and hemodilution exacerbates neurological injury in a survival piglet model with deep hypothermic circulatory arrest. Ann Thorac Surg. 2002;73:180–9.

    Article  PubMed  Google Scholar 

  32. Pua HL, Bissonnette B. Cerebral physiology in paediatric cardiopulmonary bypass. Can J Anesth. 1998;45:960–78.

    Article  PubMed  CAS  Google Scholar 

  33. Jonas RA, Bellinger DC, Rappaport LA, Wernovsky G, Hichey PR, Farrel DM, Newburger JW. Relation of pH strategy and developmental outcome after hypothermic circulatory arrest. J Thorac Cardiovasc Surg. 1993;106:362–8.

    PubMed  CAS  Google Scholar 

  34. Kurth CD, O’Rourke MM, O’Hara IB. Comparison of pH-stat and alpha-stat cardiopulmonary bypass on cerebral oxygenation and blood flow in relation to hypothermic circulatory arrest in piglets. Anesthesiology. 1998;89:110–8.

    Article  PubMed  CAS  Google Scholar 

  35. Stephan H, Weyland A, Kazmaier S, Henze T, Menck S, Sonntag H. Acid–base management during hypothermic cardiopulmonary bypass does not affect cerebral metabolism but does affect blood flow and neurological outcome. Br J Anaesth. 1992;69:51–7.

    Article  PubMed  CAS  Google Scholar 

  36. Kety SS, Schmidt CF. The effects of altered tensions of carbon dioxide and oxygen on cerebral blood flow and cerebral oxygen consumption of normal young men. J Clin Invest. 1948;27:484–92.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Tominaga R, Smith WA, Massiello A, Harasaki H, Golding LA. Chronic nonpulsatile blood flow. I. Cerebral autoregulation in chronic nonpulsatile biventricular bypass: carotid blood flow response to hypercapnia. J Thorac Cardiovasc Surg. 1994;108:907–12.

    PubMed  CAS  Google Scholar 

  38. du Plessis AJ, Jonas RA, Wypij D, Hickey PR, Riviello J, Wessel DL, Roth SJ, Burrows FA, Walter G, Farrell DM, Walsh AZ, Plumb CA, del Nido P, Burke RP, Castaneda AR, Mayer JE Jr, Newburger JW. Perioperative effects of alpha-stat versus pH-stat strategies for deep hypothermic cardiopulmonary bypass in infants. J Thorac Cardiovasc Surg. 1997;114:991–1000.

    Article  PubMed  Google Scholar 

  39. Bellinger DC, Wypij D, du Plessis AJ, Rappaport LA, Riviello J, Jonas RA, Newburger JW. Developmental and neurologic effects of alpha-stat versus pH-stat strategies for deep hypothermic cardiopulmonary bypass in infants. J Thorac Cardiovasc Surg. 2001;121:374–83.

    Article  PubMed  CAS  Google Scholar 

  40. Sakamoto T, Kurosawa H, Shin’oka T, Aoki M, Isomatsu Y. The influence of pH strategy on cerebral and collateral circulation during hypothermic cardiopulmonary bypass in cyanotic patients with heart disease: results of a randomized trial and real-time monitoring. J Thorac Cardiovasc Surg. 2004;127:12–9.

    Article  PubMed  Google Scholar 

  41. Visconti KJ, Bichell DP, Jonas RA, Newburger JW, Bellinger DC. Developmental outcome after surgical versus interventional closure of secundum atrial septal defect in children. Circulation. 1999;100(19 Suppl II):145–50.

    Google Scholar 

  42. Hornbein TF, Townes BD, Schoene RB, Sutton JR, Houston CS. The cost to the central nervous system of climbing to extremely high altitude. N Engl J Med. 1989;321:1714–9.

    Article  PubMed  CAS  Google Scholar 

  43. Cavaletti G, Garavaglia P, Arrigoni G, Tredici G. Persistent memory impairment after high altitude climbing. Int J Sports Med. 1990;11:176–8.

    Article  PubMed  CAS  Google Scholar 

  44. Garrido E, Castello A, Ventura JL, Capdevila A, Rodriguez FA. Cortical atrophy and other brain magnetic resonance imaging (MRI) changes after extremely high-altitude climbs without oxygen. Int J Sports Med. 1993;14:232–4.

    Article  PubMed  CAS  Google Scholar 

  45. Mackie AS, Alton GY, Dinu IA, Joffe AR, Roth SJ, Newburger JW, Robertson CM. Clinical outcome score predicts the need for neurodevelopmental intervention after infant heart surgery. J Thorac Cardiovasc Surg. 2013;145(5):1248–54.

    Article  PubMed  Google Scholar 

  46. Mackie AS, Vatanpour S, Alton GY, Dinu IA, Ryerson L, Moddemann DM, Thomas Petrie J, Western Canadian Complex Pediatric Therapies Program Follow-Up Group. Clinical outcome score predicts adverse neurodevelopmental outcome after infant heart surgery. Ann Thorac Surg. 2015;99:2124–32.

    Article  PubMed  Google Scholar 

  47. Jonas RA. Comprehensive surgical management of congenital heart disease. New York: Arnold; 2004. p. 94–6.

    Book  Google Scholar 

  48. Matsui H. Neonatal intensive care for critical cardiac disease. Pediatr Cardiol Card Surg. 2015;31:20–4.

    Article  Google Scholar 

  49. Nollert G, Mohnle P, Tassani-Prell P, Uttner I, Borasio GD, Schmoeckel M, Reichart B. Postoperative neuropsychological dysfunction and cerebral oxygenation during cardiac surgery. Thorac Cardiovasc Surg. 1995;43:260–4.

    Article  PubMed  CAS  Google Scholar 

  50. Kunihara T, Myojin K, Matano J, Tamura M. Clinical study on measurement of cerebral metabolism and oxygenation during cardio-pulmonary bypass by nearinfrared spectrophotometry. Nippon Kyobu Geka Gakkai Zasshi. 1995;43:1107–14.

    PubMed  CAS  Google Scholar 

  51. Skov L, Greisen G. Apparent cerebral cytochrome aa3 reduction during cardiopulmonary bypass in hypoxaemic children with congenital heart disease: a critical analysis of in vivo near-infrared spectrophotometric data. Physiol Meas. 1994;15:447–57.

    Article  PubMed  CAS  Google Scholar 

  52. Matsumoto H, Oda T, Hossain MA, Yoshimura N. Does the redox state of cytochrome aa3 reflect brain energy level during hypoxia? Simultaneous measurements by near infrared spectrophotometry and 31P nuclear magnetic resonance spectroscopy. Anesth Analg. 1996;83:513–8.

    PubMed  CAS  Google Scholar 

  53. Cope M, Delpy DT. System for long-term measurement of cerebral blood and tissue oxygenation on newborn infants by near infra-red transillumination. Med Biol Eng Comput. 1988;26:289–94.

    Article  PubMed  CAS  Google Scholar 

  54. Bayley N. Bayley-III: Bayley Scales of infant and toddler development. 3rd ed. San Antonio: Pearson; 2006.

    Google Scholar 

  55. Torras-Mañà M, Guillamón-Valenzuela M, Ramirez-Mallafré A, Brun-Gasca C, Fornieles-Deu A. Usefulness of the Bayley scales of infant and toddler development, third edition, in the early diagnosis of language disorder. Psicothema. 2014;26:349–56.

    PubMed  Google Scholar 

  56. Wechsler D. Wechsler Intelligence Scale for Children. 4th ed (WISC-IV®). San Antonio: Harcourt Assessment; 2003.

    Google Scholar 

  57. Newburger JW, Sleeper LA, Bellinger DC, Goldberg CS, Tabbutt S, Lu M, Mussatto KA, Williams IA, Gustatson KE, Mital S, Pike N, Sood E, Mahle WT, Cooper DS, Dunbar-Masterson C, Krawczeski CD, Lewis A, Menon SC, Pemberton VL, Ravishankar C, Atz TW, Ohye RG, Gaynor JW, Pediatric Heart Network Investigators. Early developmental outcome in with hypoplastic left heart syndrome and related anomalies: the single ventricle reconstruction trial. Circulation. 2012;125:2081–91.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The author thanks Richard A. Jonas, MD, Washington Children’s Medical Center, for his paving the research way for me to this field, and Mr. Tsuyoshi Kaneko, Chief Engineer, Nagano Children’s Hospital, for his valuable advice regarding CPB strategy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takahiko Sakamoto.

Ethics declarations

Conflict of interest

I have no conflict of interest.

Additional information

This review was submitted at the invitation of the editorial committee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakamoto, T. Current status of brain protection during surgery for congenital cardiac defect. Gen Thorac Cardiovasc Surg 64, 72–81 (2016). https://doi.org/10.1007/s11748-015-0606-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11748-015-0606-z

Keywords

Navigation