Skip to main content

Advertisement

Log in

Molecular basis of lung tissue regeneration

  • Current Topics Review Article
  • Published:
General Thoracic and Cardiovascular Surgery Aims and scope Submit manuscript

Abstract

Recent advances have expanded our understanding of lung endogenous stem cells, and this knowledge provides us with new ideas for future regenerative therapy for lung diseases. In studies using animal models for lung regeneration, compensatory lung growth, and lung repair, promising reagents for lung regeneration have been discovered. Stem or progenitor cells are needed for alveolar regeneration, lung growth, and lung repair after injury. Endogenous progenitor cells mainly participate in alveologenesis. However, human lung endogenous progenitor cells have not yet been clearly defined. Recently discovered human alveolar epithelial progenitor cells may give us a new perspective for understanding the pathogenesis of lung diseases. In parallel with such basic research, projects geared toward clinical application are proceeding. Cell therapy using mesenchymal stem cells to treat acute lung injury is one of the promising areas for this research. The creation of bioartificial lungs, which are based on decellularized lungs, is another interesting approach for future clinical applications. Although lungs are the most challenging organ for regenerative medicine, our cumulative knowledge of lung regeneration and of endogenous progenitor cells makes clear the possibilities and limitations of regenerative medicine for lung diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wright JL, Cosio M, Churg A. Animal models of chronic obstructive pulmonary disease. Am J Physiol Lung Cell Mol Physiol 2008;295:L1–L15.

    Article  PubMed  CAS  Google Scholar 

  2. Churg A, Cosio M, Wright JL. Mechanisms of cigarette smoke-induced COPD: insights from animal models. Am J Physiol Lung Cell Mol Physiol 2008;294:L612–L631.

    Article  PubMed  CAS  Google Scholar 

  3. Massaro D, Massaro GD, Baras A, Hoffman EP, Clerch LB. Calorie-related rapid onset of alveolar loss, regeneration, and changes in mouse lung gene expression. Am J Physiol Lung Cell Mol Physiol 2004;286:L896–L906.

    Article  PubMed  CAS  Google Scholar 

  4. Kasahara Y, Tuder RM, Taraseviciene-Stewart L, Le Cras TD, Abman S, Hirth PK, et al. Inhibition of VEGF receptors causes lung cell apoptosis and emphysema. J Clin Invest 2000;106:1311–1139.

    Article  PubMed  CAS  Google Scholar 

  5. Shapiro SD. Transgenic and gene-targeted mice as models for chronic obstructive pulmonary disease. Eur Respir J 2007;29:375–378.

    Article  PubMed  CAS  Google Scholar 

  6. Massaro GD, Massaro D. Postnatal treatment with retinoic acid increases the number of pulmonary alveoli in rats. Am J Physiol 1996;270:L305–L310.

    PubMed  CAS  Google Scholar 

  7. Malpel S, Mendelsohn C, Cardoso WV. Regulation of retinoic acid signaling during lung morphogenesis. Development 2000;127:3057–3067.

    PubMed  CAS  Google Scholar 

  8. McGowan S, Jackson SK, Jenkins-Moore M, Dai HH, Chambon P, Snyder JM. Mice bearing deletions of retinoic acid receptors demonstrate reduced lung elastin and alveolar numbers. Am J Respir Cell Mol Biol 2000;23:162–167.

    PubMed  CAS  Google Scholar 

  9. Liu B, Harvey CS, McGowan SE. Retinoic acid increases elastin in neonatal rat lung fibroblast cultures. Am J Physiol 1993;265:L430–L437.

    PubMed  CAS  Google Scholar 

  10. Massaro GD, Massaro D. Retinoic acid treatment abrogates elastase-induced pulmonary emphysema in rats. Nat Med 1997;3:675–677.

    Article  PubMed  CAS  Google Scholar 

  11. Kubo H. Lung repair and regeneration: animal models. In: Polak DJ, editor. Cell therapy for lung disease. London: Imperial College Press, UK; 2010. p. 199–235.

    Chapter  Google Scholar 

  12. Stinchcombe SV, Maden M. Retinoic acid induced alveolar regeneration: critical differences in strain sensitivity. Am J Respir Cell Mol Biol 2008;38:185–191.

    Article  PubMed  CAS  Google Scholar 

  13. Nakamura T, Nawa K, Ichihara A. Partial purification and characterization of hepatocyte growth factor from serum of hepatectomized rats. Biochem Biophys Res Commun 1984; 122:1450–1459.

    Article  PubMed  CAS  Google Scholar 

  14. Ohmichi H, Matsumoto K, Nakamura T. In vivo mitogenic action of HGF on lung epithelial cells: pulmotrophic role in lung regeneration. Am J Physiol 1996;270:L1031–L1039.

    PubMed  CAS  Google Scholar 

  15. Ohmichi H, Koshimizu U, Matsumoto K, Nakamura T. Hepatocyte growth factor (HGF) acts as a mesenchymederived morphogenic factor during fetal lung development. Development 1998;125:1315–1324.

    PubMed  CAS  Google Scholar 

  16. Panos RJ, Patel R, Bak PM. Intratracheal administration of hepatocyte growth factor/scatter factor stimulates rat alveolar type II cell proliferation in vivo. Am J Respir Cell Mol Biol 1996;15:574–581.

    PubMed  CAS  Google Scholar 

  17. Mason RJ, Leslie CC, McCormick-Shannon K, Deterding RR, Nakamura T, Rubin JS, et al. Hepatocyte growth factor is a growth factor for rat alveolar type II cells. Am J Respir Cell Mol Biol 1994;11:561–567.

    PubMed  CAS  Google Scholar 

  18. Ishizawa K, Kubo H, Yamada M, Kobayashi S, Suzuki T, Mizuno S, et al. Hepatocyte growth factor induces angiogenesis in injured lungs through mobilizing endothelial progenitor cells. Biochem Biophys Res Commun 2004;324: 276–280.

    Article  PubMed  CAS  Google Scholar 

  19. Shigemura N, Sawa Y, Mizuno S, Ono M, Ohta M, Nakamura T, et al. Amelioration of pulmonary emphysema by in vivo gene transfection with hepatocyte growth factor in rats. Circulation 2005;111:1407–1414.

    Article  PubMed  CAS  Google Scholar 

  20. Shigemura N, Okumura M, Mizuno S, Imanishi Y, Nakamura T, Sawa Y. Autologous transplantation of adipose tissue-derived stromal cells ameliorates pulmonary emphysema. Am J Transplant 2006;6:2592–2600.

    Article  PubMed  CAS  Google Scholar 

  21. Hegab AE, Kubo H, Yamaya M, Asada M, He M, Fujino N, Mizuno S, Nakamura T. Intranasal HGF administration ameliorates the physiologic and morphologic changes in lung emphysema. Mol Ther 2008;16:1417–1426.

    Article  PubMed  CAS  Google Scholar 

  22. Fukuhara S, Tomita S, Nakatani T, Ohtsu Y, Ishida M, Yutani C, et al. G-CSF promotes bone marrow cells to migrate into infarcted mice heart, and differentiate into cardiomyocytes. Cell Transplant 2004;13:741–748.

    Article  PubMed  Google Scholar 

  23. Takagi Y, Omura T, Yoshiyama M, Matsumoto R, Enomoto S, Kusuyama T, et al. Granulocyte-colony stimulating factor augments neovascularization induced by bone marrow transplantation in rat hindlimb ischemia. J Pharmacol Sci 2005;99: 45–51.

    Article  PubMed  CAS  Google Scholar 

  24. Ishizawa K, Kubo H, Yamada M, Kobayashi S, Numasaki M, Ueda S, et al. Bone marrow-derived cells contribute to lung regeneration after elastase-induced pulmonary emphysema. FEBS Lett 2004;556:249–252.

    Article  PubMed  CAS  Google Scholar 

  25. Ulich TR, Yi ES, Longmuir K, Yin S, Biltz R, Morris CF, et al. Keratinocyte growth factor is a growth factor for type II pneumocytes in vivo. J Clin Invest 1994;93:1298–1306.

    Article  PubMed  CAS  Google Scholar 

  26. Fehrenbach H, Kasper M, Tschernig T, Pan T, Schuh D, Shannon JM, et al. Keratinocyte growth factor-induced hyperplasia of rat alveolar type II cells in vivo is resolved by differentiation into type I cells and by apoptosis. Eur Respir J 1999;14:534–544.

    Article  PubMed  CAS  Google Scholar 

  27. Plantier L, Marchand-Adam S, Antico VG, Boyer L, De Coster C, Marchal J, et al. Keratinocyte growth factor protects against elastase-induced pulmonary emphysema in mice. Am J Physiol Lung Cell Mol Physiol 2007;293: L1230–L1239.

    Article  PubMed  CAS  Google Scholar 

  28. Kitamura K, Kangawa K, Kawamoto M, Ichiki Y, Nakamura S, Matsuo H, et al. Adrenomedullin: a novel hypotensive peptide isolated from human pheochromocytoma. Biochem Biophys Res Commun 1993;192:553–560.

    Article  PubMed  CAS  Google Scholar 

  29. Tokunaga N, Nagaya N, Shirai M, Tanaka E, Ishibashi-Ueda H, Harada-Shiba M, et al. Adrenomedullin gene transfer induces therapeutic angiogenesis in a rabbit model of chronic hind limb ischemia: benefits of a novel nonviral vector, gelatin. Circulation 2004;109:526–531.

    Article  PubMed  CAS  Google Scholar 

  30. Martinez A, Miller MJ, Catt KJ, Cuttitta F. Adrenomedullin receptor expression in human lung and in pulmonary tumors. J Histochem Cytochem 1997;45:159–164.

    Article  PubMed  CAS  Google Scholar 

  31. Murakami S, Nagaya N, Itoh T, Iwase T, Fujisato T, Nishioka K, et al. Adrenomedullin regenerates alveoli and vasculature in elastase-induced pulmonary emphysema in mice. Am J Respir Crit Care Med 2005;172:581–589.

    Article  PubMed  Google Scholar 

  32. Tokunaga T, Ikegami T, Yoshizumi T, Imura S, Morine Y, Shinohara H, et al. Beneficial effects of fluvastatin on liver microcirculation and regeneration after massive hepatectomy in rats. Dig Dis Sci 2008;53:2989–2994.

    Article  PubMed  CAS  Google Scholar 

  33. Takahashi S, Nakamura H, Seki M, Shiraishi Y, Yamamoto M, Furuuchi M, et al. Reversal of elastase-induced pulmonary emphysema and promotion of alveolar epithelial cell proliferation by simvastatin in mice. Am J Physiol Lung Cell Mol Physiol 2008;294:L882–L890.

    Article  PubMed  CAS  Google Scholar 

  34. Nakajima C, Kijimoto C, Yokoyama Y, Miyakawa T, Tsuchiya Y, Kuroda T, et al. Longitudinal follow-up of pulmonary function after lobectomy in childhood: factors affecting lung growth. Pediatr Surg Int 1998;13:341–345.

    Article  PubMed  CAS  Google Scholar 

  35. Hsia CC, Herazo LF, Fryder-Doffey F, Weibel ER. Compensatory lung growth occurs in adult dogs after right pneumonectomy. J Clin Invest 1994;94:405–412.

    Article  PubMed  CAS  Google Scholar 

  36. Takeda S, Hsia CC, Wagner E, Ramanathan M, Estrera AS, Weibel ER. Compensatory alveolar growth normalizes gasexchange function in immature dogs after pneumonectomy. J Appl Physiol 1999;86:1301–1310.

    PubMed  CAS  Google Scholar 

  37. Sakurai MK, Lee S, Arsenault DA, Nose V, Wilson JM, Heymach JV, et al. Vascular endothelial growth factor accelerates compensatory lung growth after unilateral pneumonectomy. Am J Physiol Lung Cell Mol Physiol 2007;292: L742–L747.

    Article  PubMed  CAS  Google Scholar 

  38. Nijjar MS, Thurlbeck WM. Alterations in enzymes related to adenosine 3′,5′-monophosphate during compensatory growth of rat lung. Eur J Biochem 1980;105:403–407

    Article  PubMed  CAS  Google Scholar 

  39. Cowan MJ, Crystal RG. Lung growth after unilateral pneumonectomy: quantitation of collagen synthesis and content. Am Rev Respir Dis 1975;111:267–277.

    PubMed  CAS  Google Scholar 

  40. Chess PR, Toia L, Finkelstein JN. Mechanical strain-induced proliferation and signaling in pulmonary epithelial h441 cells. Am J Physiol Lung Cell Mol Physiol 2000;279:L43–L51.

    PubMed  CAS  Google Scholar 

  41. Waters CM, Chang JY, Glucksberg MR, DePaola N, Grotberg JB. Mechanical forces alter growth factor release by pleural mesothelial cells. Am J Physiol 1997;272: L552–L557.

    PubMed  CAS  Google Scholar 

  42. Thibeault DW, Haney B. Lung volume, pulmonary vasculature, and factors affecting survival in congenital diaphragmatic hernia. Pediatrics 1998;101:289–295.

    Article  PubMed  CAS  Google Scholar 

  43. Berg JT, Fu Z, Breen EC, Tran HC, Mathieu-Costello O, West JB. High lung inflation increases MRNA levels of ECM components and growth factors in lung parenchyma. J Appl Physiol 1997;83:120–128.

    PubMed  CAS  Google Scholar 

  44. Landesberg LJ, Ramalingam R, Lee K, Rosengart TK, Crystal RG. Upregulation of transcription factors in lung in the early phase of postpneumonectomy lung growth. Am J Physiol Lung Cell Mol Physiol 2001;281:L1138–L1149.

    PubMed  CAS  Google Scholar 

  45. Hsia CC, Herazo LF, Ramanathan M, Johnson RL Jr. Cardiopulmonary adaptations to pneumonectomy in dogs. IV. Membrane diffusing capacity and capillary blood volume. J Appl Physiol 1994;77:998–1005.

    PubMed  CAS  Google Scholar 

  46. Haworth SG, McKenzie SA, Fitzpatrick ML. Alveolar development after ligation of left pulmonary artery in newborn pig: clinical relevance to unilateral pulmonary artery. Thorax 1981;36:938–943.

    Article  PubMed  CAS  Google Scholar 

  47. Hsia CC, Zhou XS, Bellotto DJ, Hagler HK. Regenerative growth of respiratory bronchioles in dogs. Am J Physiol Lung Cell Mol Physiol 2000;279:L136–L142.

    PubMed  CAS  Google Scholar 

  48. Kaza AK, Kron IL, Kern JA, Long SM, Fiser SM, Nguyen RP, et al. Retinoic acid enhances lung growth after pneumonectomy. Ann Thorac Surg 2001;71:1645–1650.

    Article  PubMed  CAS  Google Scholar 

  49. Yan X, Bellotto DJ, Foster DJ, Johnson RL Jr, Hagler HK, Estrera AS, et al. Retinoic acid induces nonuniform alveolar septal growth after right pneumonectomy. J Appl Physiol 2004;96:1080–1089.

    Article  PubMed  CAS  Google Scholar 

  50. Dane DM, Yan X, Tamhane RM, Johnson RL Jr, Estrera AS, Hogg DC, et al. Retinoic acid-induced alveolar cellular growth does not improve function after right pneumonectomy. J Appl Physiol 2004;96:1090–1096.

    Article  PubMed  CAS  Google Scholar 

  51. Yan X, Bellotto DJ, Dane DM, Elmore RG, Johnson RL Jr, Estrera AS, et al. Lack of response to all-trans retinoic acid supplementation in adult dogs following left pneumonectomy. J Appl Physiol 2005;99:1681–1688.

    Article  PubMed  CAS  Google Scholar 

  52. Sakamaki Y, Matsumoto K, Mizuno S, Miyoshi S, Matsuda H, Nakamura T. Hepatocyte growth factor stimulates proliferation of respiratory epithelial cells during postpneumonectomy compensatory lung growth in mice. Am J Respir Cell Mol Biol 2002;26:525–533.

    PubMed  CAS  Google Scholar 

  53. Miettinen PJ, Warburton D, Bu D, Zhao JS, Berger JE, Minoo P, et al. Impaired lung branching morphogenesis in the absence of functional EGF receptor. Dev Biol 1997;186: 224–236.

    Article  PubMed  CAS  Google Scholar 

  54. Kaza AK, Laubach VE, Kern JA, Long SM, Fiser SM, Tepper JA, et al. Epidermal growth factor augments postpneumonectomy lung growth. J Thorac Cardiovasc Surg 2000;120:916–921.

    Article  PubMed  CAS  Google Scholar 

  55. Brody JS, Fisher AB, Gocmen A, DuBois AB. Acromegalic pneumonomegaly: lung growth in the adult. J Clin Invest 1970;49:1051–60.

    Article  PubMed  CAS  Google Scholar 

  56. Jain BP, Brody JS, Fisher AB. The small lung of hypopituitarism. Am Rev Respir Dis 1973;108:49–55.

    PubMed  CAS  Google Scholar 

  57. Healy AM, Morgenthau L, Zhu X, Farber HW, Cardoso WV. VEGF is deposited in the subepithelial matrix at the leading edge of branching airways and stimulates neovascularization in the murine embryonic lung. Dev Dyn 2000;219: 341–352.

    Article  PubMed  CAS  Google Scholar 

  58. Kaner RJ, Crystal RG. Compartmentalization of vascular endothelial growth factor to the epithelial surface of the human lung. Mol Med 2001;7:240–246.

    PubMed  CAS  Google Scholar 

  59. Leuwerke SM, Kaza AK, Tribble CG, Kron IL, Laubach VE. Inhibition of compensatory lung growth in endothelial nitric oxide synthase-deficient mice. Am J Physiol Lung Cell Mol Physiol 2002;282:L1272–L1278.

    PubMed  CAS  Google Scholar 

  60. Li D, Fernandez LG, Dodd-o J, Langer J, Wang D, Laubach VE. Upregulation of hypoxia-induced mitogenic factor in compensatory lung growth after pneumonectomy. Am J Respir Cell Mol Biol 2005;32:185–191.

    Article  PubMed  CAS  Google Scholar 

  61. Kenzaki K, Sakiyama S, Kondo K, Yoshida M, Kawakami Y, Takehisa M, et al. Lung regeneration: implantation of fetal rat lung fragments into adult rat lung parenchyma. J Thorac Cardiovasc Surg 2006;131:1148–1153.

    Article  PubMed  Google Scholar 

  62. Yamada M, Kubo H, Kobayashi S, Ishizawa K, Numasaki M, Ueda S, et al. Bone marrow-derived progenitor cells are important for lung repair after lipopolysaccharide-induced lung injury. J Immunol 2004;172:1266–1272.

    PubMed  CAS  Google Scholar 

  63. Brass DM, Hollingsworth JW, Cinque M, Li Z, Potts E, Toloza E, et al. Chronic LPS inhalation causes emphysemalike changes in mouse lung that are associated with apoptosis. Am J Respir Cell Mol Biol 2008;39:584–590.

    Article  PubMed  CAS  Google Scholar 

  64. Narasaraju TA, Chen H, Weng T, Bhaskaran M, Jin N, Chen J, et al. Expression profile of IGF system during lung injury and recovery in rats exposed to hyperoxia: a possible role of IGF-1 in alveolar epithelial cell proliferation and differentiation. J Cell Biochem 2006;97:984–998.

    Article  PubMed  CAS  Google Scholar 

  65. Degryse AL, Tanjore H, Xu XC, Polosukhin VV, Jones BR, McMahon FB, et al. Repetitive intratracheal bleomycin models several features of idiopathic pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 2010;299:L442–L452.

    Article  PubMed  CAS  Google Scholar 

  66. Yamada M, Kubo H, Ishizawa K, Kobayashi S, Shinkawa M, Sasaki H. Increased circulating endothelial progenitor cells in patients with bacterial pneumonia: evidence that bone marrow derived cells contribute to lung repair. Thorax 2005;60:410–413.

    Article  PubMed  CAS  Google Scholar 

  67. Burnham EL, Taylor WR, Quyyumi AA, Rojas M, Brigham KL, Moss M. Increased circulating endothelial progenitor cells are associated with survival in acute lung injury. Am J Respir Crit Care Med 2005;172:854–860.

    Article  PubMed  Google Scholar 

  68. Yamada M, Ishizawa K, Kobayashi S, Suzuki T, Kubo H. Bone marrow-derived progenitor cells are not a source of bronchioalveolar stem cells after LPS-induced lung injury. Proc Am Thorac Soc 2006;3:A556.

    Google Scholar 

  69. Voswinckel R, Ziegelhoeffer T, Heil M, Kostin S, Breier G, Mehling T, et al. Circulating vascular progenitor cells do not contribute to compensatory lung growth. Circ Res 2003;93: 372–379.

    Article  PubMed  CAS  Google Scholar 

  70. Kim CF, Jackson EL, Woolfenden AE, Lawrence S, Babar I, Vogel S, et al. Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell 2005;121:823–835.

    Article  PubMed  CAS  Google Scholar 

  71. McQualter JL, Brouard N, Williams B, Baird BN, Sims-Lucas S, Yuen K, et al. Endogenous fibroblastic progenitor cells in the adult mouse lung are highly enriched in the SCA-1 positive cell fraction. Stem Cells 2009;27:623–633.

    Article  PubMed  CAS  Google Scholar 

  72. McQualter JL, Yuen K, Williams B, Bertoncello I. Evidence of an epithelial stem/progenitor cell hierarchy in the adult mouse lung. Proc Natl Acad Sci U S A 2010;107:1414–1419.

    Article  PubMed  CAS  Google Scholar 

  73. Hegab AE, Kubo H, Fujino N, Suzuki T, He M, Kato H, et al. Isolation and characterization of murine multipotent lung stem cells. Stem Cells Dev 2010;19:523–535.

    Article  PubMed  CAS  Google Scholar 

  74. Nolen-Walston RD, Kim CF, Mazan MR, Ingenito EP, Gruntman AM, Tsai L, et al. Cellular kinetics and modeling of bronchioalveolar stem cell response during lung regeneration. Am J Physiol Lung Cell Mol Physiol 2008;294:L1158–L1165.

    Article  PubMed  CAS  Google Scholar 

  75. Fujino N, Kubo H, Suzuki T, Ota C, Hegab AE, He M, et al. Isolation of alveolar epithelial type ii progenitor cells from adult human lungs. Lab Invest. doi: 10.1038/labinvest.2010.187.

  76. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause DS, et al. Minimal criteria for defining multipotent mesenchymal stromal cells: the International Society for Cellular Therapy position statement. Cytotherapy 2006;8:315–317.

    Article  PubMed  CAS  Google Scholar 

  77. Hennrick KT, Keeton AG, Nanua S, Kijek TG, Goldsmith AM, Sajjan US, et al. Lung cells from neonates show a mesenchymal stem cell phenotype. Am J Respir Crit Care Med 2007;175:1158–1164.

    Article  PubMed  CAS  Google Scholar 

  78. Lama VN, Smith L, Badri L, Flint A, Andrei AC, Murray S, et al. Evidence for tissue-resident mesenchymal stem cells in human adult lung from studies of transplanted allografts. J Clin Invest 2007;117:989–996.

    Article  PubMed  CAS  Google Scholar 

  79. Karoubi G, Cortes-Dericks L, Breyer I, Schmid RA, Dutly AE. Identification of mesenchymal stromal cells in human lung parenchyma capable of differentiating into aquaporin 5-expressing cells. Lab Invest 2009;89:1100–1114.

    Article  PubMed  CAS  Google Scholar 

  80. Haynesworth SE, Baber MA, Caplan AI. Cytokine expression by human marrow-derived mesenchymal progenitor cells in vitro: effects of dexamethasone and IL-1 alpha. J Cell Physiol 1996;166:585–592.

    Article  PubMed  CAS  Google Scholar 

  81. Xu J, Woods CR, Mora AL, Joodi R, Brigham KL, Iyer S, et al. Prevention of endotoxin-induced systemic response by bone marrow-derived mesenchymal stem cells in mice. Am J Physiol Lung Cell Mol Physiol 2007;293:L131–L141.

    Article  PubMed  CAS  Google Scholar 

  82. Keating A. Mesenchymal stromal cells. Curr Opin Hematol 2006;13:419–425.

    Article  PubMed  Google Scholar 

  83. Spees JL, Olson SD, Whitney MJ, Prockop DJ. Mitochondrial transfer between cells can rescue aerobic respiration. Proc Natl Acad Sci U S A 2006;103:1283–1288.

    Article  PubMed  CAS  Google Scholar 

  84. Prockop DJ. “Stemness”: does not explain the repair of many tissues by mesenchymal stem/multipotent stromal cells (MSCs). Clin Pharmacol Ther 2007;82:241–243.

    Article  PubMed  CAS  Google Scholar 

  85. Wiwanitkit V. CD133 and non-small-cell lung cancer. Eur J Cardiothorac Surg 2010;37:988; reply 988–989.

    Article  Google Scholar 

  86. Moreira AL, Gonen M, Rekhtman N, Downey RJ. Progenitor stem cell marker expression by pulmonary carcinomas. Mod Pathol 2010;23:889–895.

    Article  PubMed  CAS  Google Scholar 

  87. Mao JT, Goldin JG, Dermand J, Ibrahim G, Brown MS, Emerick A, et al. A pilot study of all-trans-retinoic acid for the treatment of human emphysema. Am J Respir Crit Care Med 2002;165:718–723.

    PubMed  Google Scholar 

  88. Roth MD, Connett JE, D’Armiento JM, Foronjy RF, Friedman PJ, Goldin JG, et al. Feasibility of retinoids for the treatment of emphysema study. Chest 2006;130:1334–1345.

    Article  PubMed  CAS  Google Scholar 

  89. Mao JT, Tashkin DP, Belloni PN, Baileyhealy I, Baratelli F, Roth MD. All-trans retinoic acid modulates the balance of matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 in patients with emphysema. Chest 2003;124: 1724–1732.

    Article  PubMed  CAS  Google Scholar 

  90. Stolk J, Cooper BG, Stoel B, Rames A, Rutman O, Soliman S, et al. Retinoid treatment of emphysema in patients on the alpha-1 international registry: the repair study-study design, methodology and quality control of study assessments. Ther Adv Respir Dis 2010;4:319–332.

    Article  PubMed  CAS  Google Scholar 

  91. Le Blanc K, Tammik C, Rosendahl K, Zetterberg E, Ringden O. HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Exp Hematol 2003;31:890–896.

    Article  PubMed  Google Scholar 

  92. Salem HK, Thiemermann C. Mesenchymal stromal cells: current understanding and clinical status. Stem Cells 2010;28:585–596.

    PubMed  CAS  Google Scholar 

  93. Matthay MA, Thompson BT, Read EJ, McKenna DH, Liu KD, Calfee CS, et al. Therapeutic potential of mesenchymal stem cells for severe acute lung injury. Chest 2010;138: 965–972.

    Article  PubMed  Google Scholar 

  94. Baber SR, Deng W, Master RG, Bunnell BA, Taylor BK, Murthy SN, et al. Intratracheal mesenchymal stem cell administration attenuates monocrotaline-induced pulmonary hypertension and endothelial dysfunction. Am J Physiol Heart Circ Physiol 2007;292:H1120–H1128.

    Article  PubMed  CAS  Google Scholar 

  95. Weiss DJ, Kolls JK, Ortiz LA, Panoskaltsis-Mortari A, Prockop DJ. Stem cells and cell therapies in lung biology and lung diseases. Proc Am Thorac Soc 2008;5: 637–667.

    Article  PubMed  Google Scholar 

  96. Rojas M, Xu J, Woods CR, Mora AL, Spears W, Roman J, et al. Bone marrow-derived mesenchymal stem cells in repair of the injured lung. Am J Respir Cell Mol Biol 2005;33: 145–152.

    Article  PubMed  CAS  Google Scholar 

  97. Gupta N, Su X, Popov B, Lee JW, Serikov V, Matthay MA. Intrapulmonary delivery of bone marrow-derived mesenchymal stem cells improves survival and attenuates endotoxininduced acute lung injury in mice. J Immunol 2007;179: 1855–1863.

    PubMed  CAS  Google Scholar 

  98. Price AP, England KA, Matson AM, Blazar BR, Panoskaltsis-Mortari A. Development of a decellularized lung bioreactor system for bioengineering the lung: the matrix reloaded. Tissue Eng Part A 2010;16:2581–2591.

    Article  PubMed  CAS  Google Scholar 

  99. Ott HC, Clippinger B, Conrad C, Schuetz C, Pomerantseva I, Ikonomou L, et al. Regeneration and orthotopic transplantation of a bioartificial lung. Nat Med 2010;16:927–933.

    Article  PubMed  CAS  Google Scholar 

  100. Petersen TH, Calle EA, Zhao L, Lee EJ, Gui L, Raredon MB, et al. Tissue-engineered lungs for in vivo implantation. Science 2010;329:538–541.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Kubo.

Additional information

This review was submitted at the invitation of the editorial committee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kubo, H. Molecular basis of lung tissue regeneration. Gen Thorac Cardiovasc Surg 59, 231–244 (2011). https://doi.org/10.1007/s11748-010-0757-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11748-010-0757-x

Key words

Navigation