Skip to main content

Advertisement

Log in

Lung cancer-associated tumor antigens and the present status of immunotherapy against non-small-cell lung cancer

  • Current Topics Review Article
  • Published:
General Thoracic and Cardiovascular Surgery Aims and scope Submit manuscript

Abstract

Despite recent advances in surgery, irradiation, and chemotherapy, the prognosis of patients with lung cancer is still poor. Therefore, the development and application of new therapeutic strategies are essential for improving the prognosis of this disease. Significant progress in our understanding of tumor immunology and molecular biology has allowed us to identify the tumor-associated antigens recognized by cytotoxic T lymphocytes. Immune responses and tumor-associated antigens against not only malignant melanoma but also lung cancer have been elucidated at the molecular level. In a theoretical sense, tumor eradication is considered possible through antigen-based immunotherapy against such diseases. However, many clinical trials of cancer vaccination with defined tumor antigens have resulted in objective clinical responses in only a small number of patients. Tumor escape mechanisms from host immune surveillance remain a major obstacle for cancer immunotherapy. A better understanding of the immune escape mechanisms employed by tumor cells is necessary before we can develop a more effective immunotherapeutic approach to lung cancer. We review recent studies regarding the identification of tumor antigens in lung cancer, tumor immune escape mechanisms, and clinical vaccine trials in lung cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ. Cancer statistics 2007. CA Cancer J Clin 2007;57:43–66.

    Article  PubMed  Google Scholar 

  2. Ohe Y, Ishizuka N, Tamura T, Sekine I, Nishiwaki Y, Saijo N, et al. Long-term follow-up of patients with unresectable locally advanced non-small cell lung cancer treated with chemoradiotherapy: a retrospective analysis of the data from the Japan Clinical Oncology Group trials (JCOG0003A). Cancer Sci 2003;94:729–734.

    Article  CAS  PubMed  Google Scholar 

  3. Goya T, Asamura H, Yoshimura H, Kato H, Shimokata K, Tsuchiya R, et al. Prognosis of 6644 resected non-small cell lung cancers in Japan: a Japanese lung cancer registry study. Lung Cancer 2005;50:227–234.

    Article  PubMed  Google Scholar 

  4. Schiller JH, Harrington D, Belani CP, Langer C, Sandler A, Krook J, et al. Comparison of four chemotherapy regimens for advanced non-small-cell lung cancer. N Engl J Med 2002;346:92–98.

    Article  CAS  PubMed  Google Scholar 

  5. Mountain CF. Staging classification of lung cancer: a critical evaluation. Clin Chest Med 2002;23:103–121.

    Article  PubMed  Google Scholar 

  6. Van der Bruggen P, Traversari C, Chomez P, Lurquin C, De Plaen E., Van den Eynde B, et al. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science 1991;254:1643–1647.

    Article  PubMed  Google Scholar 

  7. Rosenberg SA, Yang JC, Restifo NP. Cancer immunotherapy: moving beyond current vaccines. Nat Med 2004;10:909–915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Khong HT, Restifo NP. Natural selection of tumor variants in the generation of “tumor escape” phenotypes. Nat Immunol 2002;3:999–1005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. So T, Takenoyama M, Ichiki Y, Mizukami M, So T, Hanagiri T, et al. A different pattern of cytotoxic T lymphocyte recognition against primary and metastatic tumor cells in a patient with nonsmall cell lung carcinoma. Cancer 2005;103:200–288.

    Article  PubMed  Google Scholar 

  10. So T, Takenoyama M, Mizukami M, Ichiki Y, Sugaya M, Hanagiri T, et al. Haplotype loss of HLA-class I antigen as an escape mechanism from immune attack in lung cancer. Cancer Res 2005;65:5945–52.

    Article  CAS  PubMed  Google Scholar 

  11. Fukuyama T, Ichiki Y, Yamada S, Shigematsu Y, Baba T, Nagata Y, et al. Cytokine production of lung cancer cell lines: correlation between their production and the inflammatory/immunological responses both in vivo and in vitro. Cancer Sci 2007;98:1048–1054.

    Article  CAS  PubMed  Google Scholar 

  12. Lizee G, Radvanyi LG, Overwijk WW, Hwu P. Improving antitumor immune responses by circumventing immunoregulatory cells and mechanisms. Clin Cancer Res 2006;12:4794–4803.

    Article  CAS  PubMed  Google Scholar 

  13. Kim R, Emi M, Tanabe K. Cancer immunoediting from immune surveillance to immune escape. Immunology 2007;121:1–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cabrera T, Lara E, Romero JM, Maleno I, Real LM, Ruiz-Cabello F, et al. HLA class I expression in metastatic melanoma correlates with tumor development during autologous vaccination. Cancer Immunol Immunother 2007;56:709–717.

    Article  CAS  PubMed  Google Scholar 

  15. Takenoyama M, Yoshino I, Eifuku R, So T, Imahayashi S, Sugaya M, et al. Successful induction of tumor-specific cytotoxic T lymphocytes from patients with non-small cell lung cancer using CD80-transfected autologous tumor cells. Jpn J Cancer Res 2001;92:309–315.

    Article  CAS  PubMed  Google Scholar 

  16. Takenoyama M, Yasumoto K, Harada M, Sugimachi K, Nomoto K. Antitumor response of regional lymph node lymphocytes in human lung cancer. Cancer Immunol Immunother 1998;47:213–220.

    Article  CAS  PubMed  Google Scholar 

  17. Hanagiri T, Yoshino I, Takenoyama M, So T, Fujie H, Imabayashi S, et al. Effects of interleukin-12 on the induction of cytotoxic T lymphocytes from the regional lymph node lymphocytes of patients with lung adenocarcinoma. Jpn J Cancer Res 1998;89:192–198.

    Article  CAS  PubMed  Google Scholar 

  18. Takenoyama M, Yoshino I, Fujie H, Hanagiri T, Yoshimatsu T, Imabayashi S, et al. Autologous tumor-specific cytotoxic T lymphocytes in a patient with lung adenocarcinoma: implications of the shared antigens expressed in HLA-A24 lung cancer cells. Jpn J Cancer Res 1998;89:60–66.

    Article  CAS  PubMed  Google Scholar 

  19. So T, Takenoyama M, Sugaya M, Yasuda M, Eifuku R, Yoshimatsu T, et al. Generation of autologous tumor-specific T cell clones from a patient with adenosquamous carcinoma of the lung. Jpn J Clin Oncol 2001;31:311–317.

    Article  CAS  PubMed  Google Scholar 

  20. Ichiki Y, Takenoyama M, Mizukami M, So T, Sugaya M, Yasuda M, So T, et al. Simultaneous cellular and humoral immune response against mutated p53 in a patient with lung cancer. J Immunol 2004;172:4844–4850.

    Article  CAS  PubMed  Google Scholar 

  21. Nagata Y, Hanagiri T, Takenoyama M, Fukuyama T, Mizukami M, So T, et al. Identification of the HLA-Cw*0702-restricted tumor-associated antigen recognized by a CTL clone from a lung cancer patient. Clin Cancer Res 2005;11:5265–5272.

    Article  CAS  PubMed  Google Scholar 

  22. Sugaya M, Takenoyama M, Shigematsu Y, Baba T, Fukuyama T, Nagata Y, et al. Identification of HLA-A24 restricted shared antigen recognized by autologous cytotoxic T lymphocytes from a patient with large cell carcinoma of the lung. Int J Cancer 2007;120:1055–1062.

    Article  CAS  PubMed  Google Scholar 

  23. Takenoyama M, Baurain JF, Yasuda M, So T, Sugaya M, Hanagiri T, et al. A point mutation in the NFYC gene generates an antigenic peptide recognized by autologous cytolytic T lymphocytes on a human squamous cell lung carcinoma. Int J Cancer 2006;118:1992–1927.

    Article  CAS  PubMed  Google Scholar 

  24. Fukuyama T, Hanagiri T, Takenoyama M, Ichiki Y, Mizukami M, So T, et al. Identification of a new cancer/germline gene, KK-LC-1, encoding an antigen recognized by autologous CTL induced on human lung adenocarcinoma. Cancer Res 2006;66:4922–4928.

    Article  CAS  PubMed  Google Scholar 

  25. Coulie PG, Hanagiri T, Takenoyama M. From tumor antigens to immunotherapy. Int J Clin Oncol 2001;6:163–170.

    Article  CAS  PubMed  Google Scholar 

  26. Sato S, Noguchi Y, Wada H, Fujita S, Nakamura S, Tanaka R, et al. Quantitative real-time RT-PCR analysis of NY-ESO-1 and LAGE-1a mRNA expression in normal tissues and tumors, and correlation of the protein expression with the mRNA copy number. Int J Oncol2005;26:57–63.

    CAS  PubMed  Google Scholar 

  27. Jungbluth AA, Silva WA Jr, Iversen K, Frosina D, Zaidi B, Coplan K, et al. Expression of cancer-testis (CT) antigens in placenta. Cancer Immun 2007;7:15.

    PubMed  PubMed Central  Google Scholar 

  28. Groeper C, Gambazzi F, Zajac P, Bubendorf L, Adamina M, Rosenthal R, et al. Cancer/testis antigen expression and specific cytotoxic T lymphocyte responses in non small cell lung cancer. Int J Cancer 2007;120:337–343.

    Article  CAS  PubMed  Google Scholar 

  29. Boël P, Wildmann C, Sensi ML, Brasseur R, Renauld JC, Coulie P, et al. BAGE: a new gene encoding an antigen recognized on human melanomas by cytolytic T lymphocytes. Immunity 1995;2:167–175.

    Article  PubMed  Google Scholar 

  30. Van den Eynde B, Peeters O, De Backer O, Gaugler B, Lucas S, Boon T. A new family of genes coding for an antigen recognized by autologous cytolytic T lymphocytes on a human melanoma. J Exp Med 1995;182:689–698.

    Article  PubMed  Google Scholar 

  31. Gure AO, Chua R, Williamson B, Gonen M, Ferrera CA, Gnjatic S, et al. Cancer-testis genes are coordinately expressed and are markers of poor outcome in non-small cell lung cancer. Clin Cancer Res 2005;11:8055–8062.

    Article  CAS  PubMed  Google Scholar 

  32. Melloni G, Ferreri AJ, Russo V, Gattinoni L, Arrigoni G, Ceresoli GL, et al. Prognostic significance of cancer-testis gene expression in resected non-small cell lung cancer patients. Oncol Rep 2004;12:145–151.

    CAS  PubMed  Google Scholar 

  33. Immunogenicity, including vitiligo, and feasibility of vaccination with autologous GM-CSF-transduced tumor cells in metastatic melanoma patients. J Clin Oncol 2005;23:8978–8991.

  34. Makita M, Hiraki A, Azuma T, Tsuboi A, Oka Y, Sugiyama H, et al. Antilung cancer effect of WT1-specific cytotoxic T lymphocytes. Clin Cancer Res 2002;8:2626–2631.

    CAS  PubMed  Google Scholar 

  35. Bria E, Visca P, Novelli F, Casini B, Diodoro MG, Perrone-Donnorso R, et al. Nuclear and cytoplasmic cellular distribution of survivin as survival predictor in resected non-small-cell lung cancer. Eur J Surg Oncol 2008;34:593–598.

    Article  CAS  PubMed  Google Scholar 

  36. Tajima K, Ito Y, Demachi A, Nishida K, Akatsuka Y, Tsujimura K, et al. Interferon-gamma differentially regulates susceptibility of lung cancer cells to telomerase-specific cytotoxic T lymphocytes. Int J Cancer 2004;110:403–412.

    Article  CAS  PubMed  Google Scholar 

  37. Szelachowska J, Jelen M, Kornafel J. Prognostic significance of intracellular laminin and Her2/neu overexpression in nonsmall cell lung cancer. Anticancer Res 2006;26:3871–3876.

    CAS  PubMed  Google Scholar 

  38. Ichiki Y, Hanagiri T, Takenoyama M, Baba T, Fukuyama T, Nagata Y, et al. Tumor specific expression of survivin-2B in lung cancer as a novel target of immunotherapy. Lung Cancer 2005;48:281–289.

    Article  PubMed  Google Scholar 

  39. Hanada K, Yewdell JW, Yang JC. Immune recognition of a human renal cancer antigen through post-translational protein splicing. Nature 2004;427:252–256.

    Article  CAS  PubMed  Google Scholar 

  40. Hogan KT, Eisinger DP, Cupp SB 3rd, Lekstrom KJ, Deacon DD, Shabanowitz J, et al. The peptide recognized by HLA-A68.2-restricted, squamous cell carcinoma of the lung-specific cytotoxic T lymphocytes is derived from a mutated elongation factor 2 gene. Cancer Res 1998;58:5144–5150.

    CAS  PubMed  Google Scholar 

  41. Echchakir H, Mami-Chouaib F, Vergnon I, Baurain JF, Karanikas V, Chouaib S, et al. A point mutation in the alphaactinin-4 gene generates an antigenic peptide recognized by autologous cytolytic T lymphocytes on a human lung carcinoma. Cancer Res 2001;61:4078–4083.

    CAS  PubMed  Google Scholar 

  42. Karanikas V, Colau D, Baurain JF, Chiari R, Thonnard J, Gutierrez-Roelens I, et al. High frequency of cytolytic T lymphocytes directed against a tumor-specific mutated antigen detectable with HLA tetramers in the blood of a lung carcinoma patient with long survival. Cancer Res 2001;61:3718–3724.

    CAS  PubMed  Google Scholar 

  43. Gjertsen MK, Bjorheim J, Saeterdal I, Myklebust J, Gaudernack G. Cytotoxic CD4+ and CD8+ T lymphocytes, generated by mutant p21-ras (12Val) peptide vaccination of a patient, recognize 12Val-dependent nested epitopes present within the vaccine peptide and kill autologous tumour cells carrying this mutation. Int J Cancer 1997;72:784–790.

    Article  CAS  PubMed  Google Scholar 

  44. Mandruzzato S, Brasseur F, Andry G, Boon T, van der Bruggen P. A CASP-8 mutation recognized by cytolytic T lymphocytes. J Exp Med 1997;186:785–793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Aptsiauri N, Cabrera T, Mendez R, Garcia-Lora A, Ruiz-Cabello F, Garrido F. Role of altered expression of HLA class I molecules in cancer progression. Adv Exp Med Biol 2007;601:123–131.

    Article  PubMed  Google Scholar 

  46. Baba T, Hanagiri T, Ichiki Y, Kuroda K, Shigematsu Y, Mizukami M, et al. Lack and restoration of sensitivity of lung cancer cells to cellular attack with special reference to expression of human leukocyte antigen class I and/or major histocompatibility complex class I chain related molecules A/B. Cancer Sci 2007;98:1795–1802.

    Article  CAS  PubMed  Google Scholar 

  47. Ramnath N, Tan D, Li Q, Hylander BL, Bogner P, Ryes L, et al. Is downregulation of MHC class I antigen expression in human non-small cell lung cancer associated with prolonged survival? Cancer Immunol Immunother 2006;55:891–899.

    Article  CAS  PubMed  Google Scholar 

  48. Kikuchi E, Yamazaki K, Torigoe T, Cho Y, Miyamoto M, Oizumi S, et al. HLA class I antigen expression is associated with a favorable prognosis in early stage non-small cell lung cancer. Cancer Sci 2007;98:1424–1430.

    Article  CAS  PubMed  Google Scholar 

  49. Sigalotti L, Coral S, Fratta E, Lamaj E, Danielli R, Di Giacomo AM, et al. Epigenetic modulation of solid tumors as a novel approach for cancer immunotherapy. Semin Oncol 2005;32:473–478.

    Article  CAS  PubMed  Google Scholar 

  50. Madjd Z, Spendlove I, Pinder SE, Ellis IO, Durrant LG. Total loss of MHC class I is an independent indicator of good prognosis in breast cancer. Int J Cancer 2005;117:248–255.

    Article  CAS  PubMed  Google Scholar 

  51. Watson NF, Ramage JM, Madjd Z, Spendlove I, Ellis IO, Scholefield JH, et al. Immunosurveillance is active in colorectal cancer as downregulation but not complete loss of MHC class I expression correlates with a poor prognosis. Int J Cancer 2006;118:6–10.

    Article  CAS  PubMed  Google Scholar 

  52. Garcia-Lora A, Algarra I, Collado A, Garrido F. Tumour immunology, vaccination and escape strategies. Eur J Immunogenet 2003;30:177–183.

    Article  CAS  PubMed  Google Scholar 

  53. Kitagawa K, Skowyra D, Elledge SJ, Harper JW, Hieter P. SGT1 encodes an essential component of the yeast kinetochore assembly pathway and a novel subunit of the SCF ubiquitin ligase complex. Mol Cell 1999;4:21–33.

    Article  CAS  PubMed  Google Scholar 

  54. Paschen A, Arens N, Sucker A, Greulich-Bode KM, Fonsatti E, Gloghini A, et al. The coincidence of chromosome 15 aberrations and beta2-microglobulin gene mutations is causative for the total loss of human leukocyte antigen class I expression in melanoma. Clin Cancer Res 2006;12:3297–305.

    Article  CAS  PubMed  Google Scholar 

  55. Karanikas V, Zamanakou M, Kerenidi T, Dahabreh J, Hevas A, Nakou M, et al. Indoleamine 2,3-dioxygenase (IDO) expression in lung cancer. Cancer Biol Ther 2007;6:1258–1262.

    Article  CAS  PubMed  Google Scholar 

  56. Rodriguez PC, Quiceno DG, Zabaleta J, Ortiz B, Zea AH, Piazuelo MB, et al. Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses. Cancer Res 2004;64:5839–5849.

    Article  CAS  PubMed  Google Scholar 

  57. Groh V, Wu J, Yee C, Spies T. Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cell activation. Nature 2002;419:734–738.

    Article  CAS  PubMed  Google Scholar 

  58. Zang X, Allison JP. The B7 family and cancer therapy: costimulation and coinhibition. Clin Cancer Res. 2007;13:5271–5279.

    Article  CAS  PubMed  Google Scholar 

  59. Konishi J, Yamazaki K, Azuma M, Kinoshita I, Dosaka-Akita H, Nishimura M. B7-H1 expression on non-small cell lung cancer cells and its relationship with tumor-infiltrating lymphocytes and their PD-1 expression. Clin Cancer Res 2004;10:5094–5100.

    Article  CAS  PubMed  Google Scholar 

  60. Viard-Leveugle I, Veyrenc S, French LE, Brambilla C, Brambilla E. Frequent loss of Fas expression and function in human lung tumours with overexpression of FasL in small cell lung carcinoma. J Pathol 2003;201:268–277.

    Article  CAS  PubMed  Google Scholar 

  61. Dudley ME, Wunderlich JR, Yang JC, Sherry RM, Topalian SL, Restifo NP, et al. Adoptive cell transfer therapy following non-myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma. J Clin Oncol 2005;23:2346–23457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Trefzer U, Hofmann M, Reinke S, Guo YJ, Audring H, Spagnoli G, et al. Concordant loss of melanoma differentiation antigens in synchronous and asynchronous melanoma metastases: implications for immunotherapy. Melanoma Res 2006;16:137–145.

    Article  CAS  PubMed  Google Scholar 

  63. De Vries TJ, Smeets M, de Graaf R, Hou-Jensen K, Brocker EB, Renard N, et al. Expression of gp100, MART-1, tyrosinase, and S100 in paraffin-embedded primary melanomas and locoregional, lymph node, and visceral metastases: implications for diagnosis and immunotherapy: a study conducted by the EORTC Melanoma Cooperative Group. J Pathol 2001;193:13–20.

    Article  PubMed  Google Scholar 

  64. Gabrilovich D. Mechanisms and functional significance of tumour-induced dendritic-cell defects. Nat Rev Immunol 2004;4:941–952.

    Article  CAS  PubMed  Google Scholar 

  65. Petersen RP, Campa MJ, Sperlazza J, Conlon D, Joshi MB, Harpole DH Jr, et al. Tumor infiltrating Foxp3+ regulatory T-cells are associated with recurrence in pathologic stage I NSCLC patients. Cancer 2006;107:2866–2872.

    Article  PubMed  Google Scholar 

  66. Meloni F, Morosini M, Solari N, Passadore I, Nascimbene C, Novo M, et al. Foxp3 expressing CD4+ CD25+ and CD8+CD28-T regulatory cells in the peripheral blood of patients with lung cancer and pleural mesothelioma. Hum Immunol 2006;67:1–12.

    Article  CAS  PubMed  Google Scholar 

  67. Nagai S, Takenaka K, Sonobe M, Ogawa E, Wada H, Tanaka F. A novel classification of MUC1 expression is correlated with tumor differentiation and postoperative prognosis in non-small cell lung cancer. J Thorac Oncol 2006;1:46–51.

    PubMed  Google Scholar 

  68. Napoletano C, Rughetti A, Agervig Tarp MP, Coleman J, Bennett EP, Picco G, et al. Tumor-associated Tn-MUC1 glycoform is internalized through the macrophage galactose-type C-type lectin and delivered to the HLA class I and II compartments in dendritic cells. Cancer Res 2007;67:8358–8367.

    Article  CAS  PubMed  Google Scholar 

  69. Sangha R, Butts C. L-BLP25: a peptide vaccine strategy in non small cell lung cancer. Clin Cancer Res 2007;13:s4652–s4654.

    Article  PubMed  Google Scholar 

  70. Atanackovic D, Altorki NK, Stockert E, Williamson B, Jungbluth AA, Ritter E, et al. Vaccine-induced CD4+ T cell responses to MAGE-3 protein in lung cancer patients. J Immunol 2004;172:3289–3296.

    Article  CAS  PubMed  Google Scholar 

  71. Vansteenkiste J, Zielinski M, Linder A, Dahabre J, Esteban E, Malinowski W, et al. Final results of a multi-center, doubleblind, randomized, placebo-controlled phase II study to assess the efficacy of MAGE-A3 immunotherapeutic as adjuvant therapy in stage IB/II non-small cell lung cancer. J Clin Oncol Suppl 2007;25:398s.

    Google Scholar 

  72. Liu VC, Wong LY, Jang T, Shah AH, Park I, Yang X, et al. Tumor evasion of the immune system by converting CD4+CD25-T cells into CD4+CD25+ T regulatory cells: role of tumor-derived TGF-beta. J Immunol 2007;178:2883–2892.

    Article  CAS  PubMed  Google Scholar 

  73. Hasegawa Y, Takanashi S, Kanehira Y, Tsushima T, Imai T, Okumura K. Transforming growth factor-beta1 level correlates with angiogenesis, tumor progression, and prognosis in patients with nonsmall cell lung carcinoma. Cancer 2001;91:964–971.

    Article  CAS  PubMed  Google Scholar 

  74. Nemunaitis J, Dillman RO, Schwarzenberger PO, Senzer N, Cunningham C, Cutler J, et al. Phase II study of belagenpumatucel-L, a transforming growth factor beta-2 antisense gene-modified allogeneic tumor cell vaccine in non-small-cell lung cancer. J Clin Oncol 2006;24:4721–4730.

    Article  CAS  PubMed  Google Scholar 

  75. Mendez R, Ruiz-Cabello F, Rodriguez T, Del Campo A, Paschen A, Schadendorf D, et al. Identification of different tumor escape mechanisms in several metastases from a melanoma patient undergoing immunotherapy. Cancer Immunol Immunother 2007;56:88–94.

    Article  PubMed  Google Scholar 

  76. Yamshchikov GV, Mullins DW, Chang CC, Ogino T, Thompson L, Presley J, et al. Sequential immune escape and shifting of T cell responses in a long-term survivor of melanoma. J Immunol 2005;174:6863–6871.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kosei Yasumoto.

Additional information

This review was submitted at the invitation of the editorial committee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yasumoto, K., Hanagiri, T. & Takenoyama, M. Lung cancer-associated tumor antigens and the present status of immunotherapy against non-small-cell lung cancer. Gen Thorac Cardiovasc Surg 57, 449–457 (2009). https://doi.org/10.1007/s11748-008-0433-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11748-008-0433-6

Key words

Navigation