Skip to main content
Log in

Cooperative advertising, pricing strategy and firm performance in the e-marketing age

  • Conceptual/Theoretical Paper
  • Published:
Journal of the Academy of Marketing Science Aims and scope Submit manuscript

Abstract

Cooperative advertising plays a strategically important role in marketing programs. In this paper, we use a game theoretical model to study not only cooperative advertising but also pricing strategy in a manufacturer—e-retailer supply chain with the consideration of product categories. First, two cooperative advertising models (the leader-follower Stackelberg and the strategic alliance) are established and analyzed. We then compare the two models to develop some important theories and managerial insights. Furthermore, we utilize a bargaining model to implement profit sharing and determine the manufacturer’s participation rate for cooperative advertising in the channel coordination of strategic alliance. Based on our results, we derive optimal market strategies and identify probable paths of future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  • Balasubramanian, S. (1998). Mail versus mall: a strategic analysis of competition between direct markets and conventional retailers. Marketing Science, 17, 181–195.

    Article  Google Scholar 

  • Bergen, M., & John, G. (1997). Understanding cooperative advertising participation rates in conventional channels. Journal of Marketing Research, 35, 357–369.

    Article  Google Scholar 

  • Berger, P. D. (1972). Vertical cooperative advertising ventures. Journal of Marketing Research, 9, 309–312.

    Article  Google Scholar 

  • Chiang, W. Y., Chhajed, D., & Hess, J. D. (2003). Direct marketing, indirect profits: a strategic analysis of dual-channel supply chain design. Management Science, 49(1), 1–20.

    Article  Google Scholar 

  • Dant, R. P., & Berger, P. D. (1996). Modeling cooperative advertising decisions in franchising. The Journal of the Operation Research Society, 47(9), 1120–1136.

    Google Scholar 

  • Gerstner, E., & Hess, J. (1995). Pull promotions and channel coordination. Marketing Science, 14(1), 43–60.

    Article  Google Scholar 

  • Houk, B. (1995). Co-op advertising. Lincolnwood: NTC.

    Google Scholar 

  • Huang, Z., & Li, S. X. (2001). Co-op advertising models in a manufacturer-retailer supply chain: A game theory approach. European Journal of Operational Research, 135(3), 527–544.

    Article  Google Scholar 

  • Huang, Z. M., Li, S. X., & Mahajan, V. (2002). An analysis of manufacturer-retailer supply chain coordination in cooperative advertising. Decision Sciences, 33, 1–20.

    Article  Google Scholar 

  • Ingene, C. A., & Parry, M. (1995). Channel coordination when retailers compete. Marketing Science, 14(4), 360–377.

    Article  Google Scholar 

  • Iyer, G. (1998). Coordinating channels under price and nonprice competition. Marketing Science, 17, 338–355.

    Article  Google Scholar 

  • Jeuland, A. P., & Shugan, S. M. (1983). Managing channel profits. Marketing Science, 2(3), 239–272.

    Article  Google Scholar 

  • Kacen, J., Hess, J., & Chiang, W. K. (2002). Bricks or clicks? Consumer attitudes toward traditional stores and online stores. Champaign: Working paper, University of Illinois.

    Google Scholar 

  • Karry, S., & Zaccour, G. (2006). Could co-op advertising be a manufacturer’s counterstrategy to store brands? Journal of Business Research, 59, 1008–1015.

    Article  Google Scholar 

  • Kim, S. Y., & Staelin, R. (1999). Manufacturer allowances and retailer pass-through rates in a competitive environment. Management Science, 18(1), 59–76.

    Google Scholar 

  • Korgaonkar, P., Silverblatt, R., & Girard, T. (2006). Online retailing, product classifications, and consumer preferences. Internet Research, 16(3), 267–287.

    Article  Google Scholar 

  • Koulamas, C. (2006). A newsvendor problem with revenue sharing and channel coordination. Decision Sciences, 37(1), 91–100.

    Article  Google Scholar 

  • Kumar, N., & Ruan, R. (2006). On manufacturers complementing the traditional retail channel with a direct online channel. Quantitative Marketing and Economics, 4(3), 289–323.

    Article  Google Scholar 

  • Kwak, H., Fox, R. J., & Zinkhan, G. M. (2002). What products can be successfully promoted and sold via the Internet? Journal of Advertising Research, 2, 23–38.

    Google Scholar 

  • Lal, R., & Sarvay, M. (1999). When and how is the Internet likely to decrease price competition? Marketing Science, 18(4), 485–503.

    Article  Google Scholar 

  • Li, S. X., Huang, Z. M., Zhu, J., & Chau, P. Y. K. (2002). Cooperative advertising, game theory and manufacturer-retailer supply chains. Omega, 30(5), 347–360.

    Article  Google Scholar 

  • Little, J. D. C. (1979). Aggregate advertising models: The state of the art. Operations Research, 27, 619–627.

    Article  Google Scholar 

  • McGuire, T. W., & Staelin, R. (1983). An industry equilibrium analysis of downstream vertical integration. Marketing Science, 2(2), 161–191.

    Article  Google Scholar 

  • Nash, J. F. (1950). The bargaining problem. Econometrica, 18, 155–162.

    Article  Google Scholar 

  • Raju, J. S., & Zhang, J. Z. (2005). Channel coordination in the presence of a dominant retailer. Marketing Science, 24(2), 254–262.

    Article  Google Scholar 

  • Rosenbloom, B. (2003). Marketing channels: A management view. Thomson South-Western.

  • Somers, T. M., Gupta, Y. P., & Herriott, S. R. (1990). Analysis of cooperative advertising expenditures: a transfer-function modeling approach. Journal of Advertising Research, 10(11), 35–45.

    Google Scholar 

  • Von Stackelberg, H. F. (1934). Market form und Gleichgewicht (Market Structure and Equilibrium). Berlin: Springer.

    Google Scholar 

  • Stewart, D. W., & Pavlou, P. A. (2002). From consumer response to active consumer: Measuring the effectiveness of interactive media. Journal of the Academy of Marketing Science, 30(4), 376–396.

    Article  Google Scholar 

  • Weng, Z. K. (1995). Channel coordination and quantity discounts. Management Science, 41(9), 1509–1521.

    Article  Google Scholar 

  • Yan, R., & Pei, Z. (2009). Retail services and firm profit in a dual-channel market. Journal of Retailing and Consumer Services, 16(4), 306–314.

    Article  Google Scholar 

Download references

Acknowledgement

The author gratefully acknowledges the Editor, Dr. G. Tomas M. Hult, and former Editor, Dr. David W. Stewart, and four anonymous reviewers for their constructive comments and suggestions that were instrumental in improving this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruiliang Yan.

Appendices

Appendix 1

$$ D = \left( {\theta - p} \right)\left( {\lambda r\sqrt A + k\sqrt Q } \right) $$
(A1)

The profit for the manufacturer is as follows:

$$ {\pi_m} = wD - tA - Q $$
(A2)

Similarly, for the e-retailer, the profit is as follows:

$$ {\pi_r} = \left( {p - w} \right)D - \left( {1 - t} \right)A $$
(A3)

The total profit for the whole supply chain is as follows:

$$ {\pi_T} = {\pi_m} + {\pi_r} = pD - A - Q $$
(A4)

Taking the derivative of (A3) with respect to p and A, respectively, and letting \( \left( {{{\partial {\pi_r}} \mathord{\left/{\vphantom {{\partial {\pi_r}} {\partial p}}} \right.} {\partial p}}} \right) = 0 \) and \( \left( {{{\partial {\pi_r}} \mathord{\left/{\vphantom {{\partial {\pi_r}} {\partial A}}} \right.} {\partial A}}} \right) = 0 \) yields:

$$ {p^S} = \frac{1}{2}\left( {w + \theta } \right) $$
(A5)
$$ {A^S} = \frac{{{\lambda^2}{r^2}{{\left( {\theta - w} \right)}^4}}}{{64{{\left( {1 - t} \right)}^2}}} $$
(A6)

Substituting (A5) and (A6) into (A2), then by the differential of π m on w, Q and t, respectively, and letting \( \left( {{{\partial {\pi_m}} \mathord{\left/{\vphantom {{\partial {\pi_m}} {\partial w}}} \right.} {\partial w}}} \right) = 0 \), \( \left( {{{\partial {\pi_m}} \mathord{\left/{\vphantom {{\partial {\pi_m}} {\partial Q}}} \right.} {\partial Q}}} \right) = 0 \) and \( \left( {{{\partial {\pi_m}} \mathord{\left/{\vphantom {{\partial {\pi_m}} {\partial t}}} \right.} {\partial t}}} \right) = 0 \), we obtain:

$$ {w_S} = \frac{{4{k^2}\theta + {\lambda^2}{r^2}\theta \sqrt {9 + \frac{{16{k^2}\left( {{k^2} + {\lambda^2}{r^2}} \right)}}{{{\lambda^4}{r^4}}}} }}{{9{\lambda^2}{r^2} + 16{k^2}}} $$
(A7)
$$ {t^S} = \frac{{5{w_S} - \theta }}{{3{w_S} + \theta }} $$
(A8)
$$ {Q^S} = \frac{{{k^2}w_S^2{{\left( {\theta - {w_S}} \right)}^2}}}{{16}} $$
(A9)

Substituting (A7), (A8) and (A9) into all of the functions, we then obtain all of results listed in Table 2.

Appendix 2

Because \( {w_S} = \frac{{4{k^2}\theta + {\lambda^2}{r^2}\theta \sqrt {9 + \frac{{16{k^2}\left( {{k^2} + {\lambda^2}{r^2}} \right)}}{{{\lambda^4}{r^4}}}} }}{{9{\lambda^2}{r^2} + 16{k^2}}} \) and \( {Q^S} = \frac{{{k^2}w_S^2{{\left( {\theta - {w_S}} \right)}^2}}}{{16}} \), thus it is easy to prove that \( {{\partial {Q^S}} \mathord{\left/{\vphantom {{\partial {Q^S}} {\partial k > 0}}} \right.} {\partial k > 0}} \), \( {{\partial {Q^S}} \mathord{\left/{\vphantom {{\partial {Q^S}} {\partial \theta > 0}}} \right.} {\partial \theta > 0}} \) and \( {{\partial {Q^S}} \mathord{\left/{\vphantom {{\partial {Q^S}} {\partial \lambda\kern1.5pt<\kern1.5pt0}}} \right.} {\partial \lambda\kern1.5pt<\kern1.5pt0}} \). Similarly, we can easily prove that \( {{\partial {A^S}} \mathord{\left/{\vphantom {{\partial {A^S}} {\partial k\kern1.5pt<\kern1.5pt0}}} \right.} {\partial k\kern1.5pt<\kern1.5pt0}} \), \( {{\partial {A^S}} \mathord{\left/{\vphantom {{\partial {A^S}} {\partial \lambda > 0}}} \right.} {\partial \lambda > 0}} \), \( {{\partial {A^S}} \mathord{\left/{\vphantom {{\partial {A^S}} {\partial r > 0}}} \right.} {\partial r > 0}} \), \( {{\partial {A^S}} \mathord{\left/{\vphantom {{\partial {A^S}} {\partial {t^S} > 0}}} \right.} {\partial {t^S} > 0}} \), \( {{\partial {A^S}} \mathord{\left/{\vphantom {{\partial {A^S}} {\partial \theta > 0}}} \right.} {\partial \theta > 0}} \); \( {{\partial {p^S}} \mathord{\left/{\vphantom {{\partial {p^S}} {\partial \theta > 0}}} \right.} {\partial \theta > 0}} \),\( {{\partial {w_S}} \mathord{\left/{\vphantom {{\partial {w_S}} {\partial \theta > 0}}} \right.} {\partial \theta > 0}} \), \( {{\partial {p^S}} \mathord{\left/{\vphantom {{\partial {p^S}} {\partial k > 0}}} \right.} {\partial k > 0}} \), \( {{\partial {p^S}} \mathord{\left/{\vphantom {{\partial {p^S}} {\partial \lambda\kern1.5pt<\kern1.5pt0}}} \right.} {\partial \lambda\kern1.5pt<\kern1.5pt0}} \), \( {{\partial {w_S}} \mathord{\left/{\vphantom {{\partial {w_S}} {\partial k > 0}}} \right.} {\partial k > 0}} \), \( {{\partial {w^S}} \mathord{\left/{\vphantom {{\partial {w^S}} {\partial \lambda\kern1.5pt<\kern1.5pt0}}} \right.} {\partial \lambda\kern1.5pt<\kern1.5pt0}} \), \( {{\partial {w_S}} \mathord{\left/{\vphantom {{\partial {w_S}} {\partial \theta > 0}}} \right.} {\partial \theta > 0}} \), \( {{\partial {t^S}} \mathord{\left/{\vphantom {{\partial {t^S}} {\partial k > 0}}} \right.} {\partial k > 0}} \), \( {{\partial {t^S}} \mathord{\left/{\vphantom {{\partial {t^S}} {\partial \lambda > 0}}} \right.} {\partial \lambda > 0}} \) and \( {{\partial {t^S}} \mathord{\left/{\vphantom {{\partial {t^S}} {\partial \theta = 0}}} \right.} {\partial \theta = 0}} \).

Appendix 3

$$ {\text{Because}}{\pi_A} = pD - A - Q $$
(A10)

Thus taking the derivative of π A on p, Q and A, respectively, and letting \( ({{\partial {\pi_A}} \mathord{\left/{\vphantom {{\partial {\pi_A}} {\partial p}}} \right.} {\partial p}}) = 0 \), \( \left( {{{\partial {\pi_A}} \mathord{\left/{\vphantom {{\partial {\pi_A}} {\partial Q}}} \right.} {\partial Q}}} \right) = 0 \) and \( \left( {{{\partial {\pi_A}} \mathord{\left/{\vphantom {{\partial {\pi_A}} {\partial A}}} \right.} {\partial A}}} \right) = 0 \), we then obtain:

$$ {Q^A} = \frac{{{k^2}{\theta^4}}}{{64}},{p^A} = \frac{\theta }{2},{A^A} = \frac{{{\lambda^2}{r^2}{\theta^4}}}{{64}} $$
(A11)

Substituting (A11) into all of the functions, then we obtain all of results listed in Table 3.

Appendix 4

Because \( {w_S} = \frac{{4{k^2}\theta + {\lambda^2}{r^2}\theta \sqrt {9 + \frac{{16{k^2}\left( {{k^2} + {\lambda^2}{r^2}} \right)}}{{{\lambda^4}{r^4}}}} }}{{9{\lambda^2}{r^2} + 16{k^2}}} \), we let \( g = \frac{k}{{\lambda r}} \), then we have \( {w_S} = \frac{{4{g^2}\theta + \theta \sqrt {9 + 16{g^2}\left( {1 + {g^2}} \right)} }}{{9 + 16{g^2}}} \), \( {{\partial {w_S}} \mathord{\left/{\vphantom {{\partial {w_S}} {\partial g > 0}}} \right.} {\partial g > 0}} \) and g > 0, thus we obtain \( \frac{\theta }{3}{|_{g = 0}} \leqslant {w_S} \leqslant \frac{\theta }{2}{|_{g \to \infty }} \). Also, \( {\pi_T} = \frac{{{{\left( {\theta - {w_S}} \right)}^2}\left( {2\left( {5 + 8{g^2}} \right){w_S}\theta + 3w_S^2 + 3{\theta^2}} \right)}}{{256}} \), thus we obtain \( {{\partial {\pi_T}} \mathord{\left/{\vphantom {{\partial {\pi_T}} {\partial {w_S}\kern1.5pt<\kern1.5pt0}}} \right.} {\partial {w_S}\kern1.5pt<\kern1.5pt0}} \). \( {\pi_T}\kern1.5pt<\kern1.5pt{\pi_T}{|_{{w_S} = \theta /3}} = \frac{{{\theta^4}\left( {5 + 4{g^2}} \right)}}{{1296}} \). Furthermore, \( {\pi_A} = \frac{{{\theta^4}\left( {1 + {g^2}} \right)}}{{64}} \).

Thus, it is easy to prove that \( {\pi_A} > {\pi_T}{|_{{w_S} = \theta /3}} \). Thus, we have \( {\pi_A} > {\pi_T} \).

By the same way, we can prove that A A > A S, p A < p S and D A > D S.

Thus, Proposition 2 is proved.

Appendix 5

Let \( f = \frac{{4{g^2} + \sqrt {9 + 16{g^2}\left( {1 + {g^2}} \right)} }}{{9 + 16{g^2}}} \), thus \( {w_S} = f\theta \).

Thus, \( {\pi_T} = \frac{{{\theta^4}{{\left( {1 - f} \right)}^2}\left( {2f\left( {5 + 8{g^2}} \right) + 3{f^2} + 3} \right)}}{{256}} \) and \( {\pi_A} = \frac{{{\theta^4}\left( {1 + {g^2}} \right)}}{{64}} \),

So \( \partial ({\pi_A} - {\pi_T})/\partial \theta = \frac{{{\theta^3}\left( {4\left( {1 + {g^2}} \right) - {{\left( {1 - f} \right)}^2}\left( {2f\left( {5 + 8{g^2}} \right) + 3{f^2} + 3} \right)} \right)}}{{64}} > 0. \)

Thus, Proposition 3 is proved.

Appendix 6

If the profit sharing is successful, the acceptable schemes to the manufacturer and the e-retailer respectively are:

$$ \Delta {\pi_m} = \pi_m^P - {\pi_m} \geqslant 0 $$
$$ \Delta {\pi_r} = \pi_r^P - {\pi_r} \geqslant 0 $$

From Appendix 4, we know \( {\pi_A} > {\pi_T} = \pi_m^S + \pi_r^S. \)

Thus, we have \( \pi_m^P + \pi_r^P = {\pi_A} > \pi_m^S + \pi_r^S. \)

Therefore, Proposition 4 is proved.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, R. Cooperative advertising, pricing strategy and firm performance in the e-marketing age. J. of the Acad. Mark. Sci. 38, 510–519 (2010). https://doi.org/10.1007/s11747-009-0171-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11747-009-0171-z

Keywords

Navigation