Skip to main content
Log in

Catalysts for Fatty Alcohol Production from Renewable Resources

  • Review
  • Published:
Journal of the American Oil Chemists' Society

Abstract

Fatty alcohols may be produced through the processing of fatty acids or their esters derived from palm or coconut oils. Fatty alcohol technology can be classified into two categories (a) a slurry-phase process in which the fatty acid or its ester is converted into alcohol using a powdered catalyst and (b) fixed bed technology in which the fatty acid or its ester is processed over a formed catalyst, e.g. tablets or extrudates. Historically copper-based catalysts are employed for achieving ester hydrogenolysis. In recent years, studies were also focused on precious metal catalysts for this process. This paper will critically review existing literature pertaining to the catalysts that operate at diverse conditions, handle different feedstocks, and are compatible with a variety of unit operations used by the fatty alcohol manufacturers. There is an effort to develop environmentally friendly non-chrome copper catalyst in this process. Some recent progress on bimetallic Cu-Fe catalyst and understanding Cu-Fe interaction has been reported. Current development on homogenous catalysts in this process was carefully reviewed. The catalyst deactivation mechanism has been investigated and effect of different impurities, mainly phosphorous, sulfur, chloride, water, glycerine and free fatty acid was thoroughly reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Kenneally C (2001) Alcohols, higher aliphatic, survey. In: Kirk-Othmer encyclopedia of chemical technology, vol 2. Wiley

  2. Colin A (2013) Higher alcohols 2025. Houston Associates report

  3. Lo C, Cameron W (2012) Nexant ChemSystems PERP report on “oleochemicals"

  4. Suyenty E, Sentosa H, Agustine M, Anwar S, Lie A, Sutanto E (2007) Catalyst in basic oleochemicals. Bull Chem React Eng Catal 2:22–31

    Article  Google Scholar 

  5. Behr A, Westfechtel A, Gomes JP (2008) Catalytic processes for the technical use of natural fats and oils. Chem Eng Technol 31:700–714

    Article  CAS  Google Scholar 

  6. Thakur D, Okonek D, Hoelzle M (2008) Paper presented at PRO 3/EXH 2: processing exhibitor session; the 99th AOCS annual meeting and expo

  7. Noweck K, Grafahrend W (2012) Fatty alcohols. Ullmann’s encyclopedia of industrial chemistry, vol 14. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 117–141

    Google Scholar 

  8. Hansley V.L. (1937) Reduction of esters. US Patent 2,096,036

  9. Hansley V.L (1939) Ester condensations. US Patent 2,158,071

  10. Kastens M, Peddicord H (1949) Alcohols by sodium reduction. Ind Eng Chem 41:438–446

    Article  CAS  Google Scholar 

  11. Adkins H, Folkers K (1931) The catalytic hydrogenation of esters to alcohols. J Am Chem Soc 53:1095–1097

    Article  CAS  Google Scholar 

  12. Norman W (1931) Über die katalytische Reduktion der Carboxylgruppe. Angew Chem 44:714–717

    Article  Google Scholar 

  13. Schrauth W, Schenk O, Stickdorn K (1931) Über die Herstellung von Kohlenwasserstoffen und Alkoholen durch Hochdruck-Reduktion von Fettstoffen. Ber Dtsch Chem Ges 64:1314–1318

    Article  Google Scholar 

  14. Schmidt O (1931) Die Katalytische Hydrierung der Carboxylgruppe in organischen Verbindungen, Insbesondere solchen höheren Molekulargewichts. Ber Dtsch Chem Ges 64:2051–2053

    Article  Google Scholar 

  15. Adkins H, Folker K, Conner R (1937) Method of hydrogenating esters. US Patent 2,091,800

  16. Adkins H (1940) Hydrogenation role of the catalyst. Ind Eng Chem 32:1189–1192

    Article  CAS  Google Scholar 

  17. Rittmeister W (1941) Process for the reduction of fatty acids to alcohols. US Patent 2,248,465A

  18. Rittmeister W (1959) Process for the production of unsaturated fatty alcohols. US Patent 3,193,586A

  19. Richardson A, Taylor J (1944) Process for forming alcohols or esters. US Patent 2,340,343

  20. Rabes IV, Schenck R (1948) Die Adkins’schen Kupfer-Chromit-Katalysatoren und ihre Wirkungsursache. Zeitschrift für Elektrochemie und angewandte physikalische Chemie 52:37–39

    CAS  Google Scholar 

  21. Reiner TW (1949) An improved laboratory preparation of copper-chromium oxide catalyst. J Am Chem Soc 71:1130

    Article  Google Scholar 

  22. Stroupe JD (1949) An X-ray diffraction study of the copper chromites and of the “copper-chromium oxide” catalyst. J Am Chem Soc 71:569–572

    Article  CAS  Google Scholar 

  23. Adkins H, Burgoyne E, Schneider HJ (1950) The copper–chromium oxide catalyst for hydrogenation. J Am Chem Soc 72:2626–2629

    Article  CAS  Google Scholar 

  24. De Nora V, de Bartholomaeis E (1956) Continuous hydrogenation of fatty material. US Patent 2,750,429

  25. Toland W, Rafael S, Levine I (1957) Higher fatty alcohols. US Patent 2,776,323

  26. Church J, Abdel-Gelil M (1957) Catalytic hydrogenation of methyl laurate to lauryl alcohol. Ind Eng Chem 49:813–817

    Article  CAS  Google Scholar 

  27. Haidegger E, Karolyi J, Zalai A (1959) Die Erzeugung von Fettalkoholen durch katalytische Hochdruckhydrierung. I. Acta Chim Acad Sci Hung 19:23

    CAS  Google Scholar 

  28. Karolyi J, Haidegger E, Hodossy L (1960) Erzeugung von fettalkoholen mittels katalytischer hochdruckhydrierung. II. Acta Chim Acad Sci Hung 20:157

    Google Scholar 

  29. Pantulu AJ, Achaya KT (1964) Hydrogenolysis of saturated, oleic and ricinoleic acids to the corresponding alcohols. J Am Oil Chem Soc 41:511–514

    Article  CAS  Google Scholar 

  30. Eisenlohr K-H, Voeste T (1965) Process for the production of fatty alcohols by catalytic hydrogenation of fatty acids and their derivatives. US Patent 3,180,898

  31. Muttzall KMK (1966) High-pressure hydrogenation of fatty acid esters to fatty alcohols. Ph. D. thesis, University of Delft, The Netherlands

  32. Muttzall KMK, van der Berg PJ (1971) Hydrogenation of fatty acid esters to fatty alcohols. In: Proceedings of the European symposium chemical reaction engineering (1968), 4th edn. Pergamon Press Ltd., Oxford, pp 277–285

  33. Frazee JR, Martin B, Brundrett C (1973) Supported copper chromite catalyst. US Patent 3,756,964

  34. Montgomery S (1973) Process for producing copper chromite catalysts. US Patent 3,767,595

  35. Boerma H (1976) In: Delmon B, Jacobs P, Poncelet G (eds) Preparation of copper and zinc chromium oxide catalysts for the reduction of fatty esters to alcohols. In: International Symposium on preparation of catalysis, vol 1. Elsevier, pp 105-118

  36. Monick JA (1979) Fatty alcohols. J Am Oil Chem Soc 56:853A–860A

    Article  CAS  Google Scholar 

  37. Voeste T, Schmidt HJ, Marschner F (1981) Continuous process of producing fatty alcohols. US Patent 4,259,536

  38. Buchold H (1983) Natural fats and oils route to fatty alcohols. Chem Eng 90:42–43

    CAS  Google Scholar 

  39. Voeste T, Buchold H (1984) Production of fatty alcohols from fatty acids. J Am Oil Chem Soc 61:350–352

    Article  CAS  Google Scholar 

  40. Kreutzer UR (1984) Manufacture of fatty alcohols based on natural fats and oils. J Am Oil Chem Soc 61:343–348

    Article  CAS  Google Scholar 

  41. Schuett H (1989) Process for obtaining fatty alcohols from free fatty acids. US Patent 4,804,790

  42. Fleckenstein T (1991) Process for the hydrogenation of fatty acid methyl ester mixtures. US Patent 5,043,485

  43. Demmering G, Heck S, Friesenhagen L (1994) Process for the production of fatty alcohols. US Patent 5,364,986

  44. Poels EK, Polman DRE, Vresswijk JJ (1992) Alcohol production by the hydrogenation of fatty acid esters. GB 2,250,287 A1

  45. Wilmott M, Harrison G, Scarlett J, Wood M, McKinley D (1992) Fatty alcohols. US Patent 5,138,106

  46. Wilmott M, Harrison G, Scarlett J, Wood M, McKinley D (1992) Process for the production of fatty alcohols. US Patent 5,157,168

  47. Buchold H, Gartner F-J, Mallok G, Schlichting E, Stonner H-M (1997) Process for preparing wax esters and hydrogenation of wax esters to fatty alcohols. US Patent 5,608,122

  48. Boensch R, Noweck K (2013) Method for the production of fatty alcohols. US Patent 8,426,654

  49. Appleton P, Wood M, Wild R (2014) Process for producing fatty alcohols from fatty acids. US Patent 8884078

  50. van de Scheur FT, Vreeswijk JJ (1994) Process for the production of alcohols. WO 1994006738 A1

  51. van den Hark S, Härröd M, Møller P (1999) Hydrogenation of fatty acid methyl esters to fatty alcohols at supercritical conditions. J Am Oil Chem Soc 76:1363–1370

    Article  Google Scholar 

  52. van den Hark S, Harrod M (2001) Hydrogenation of oleochemicals at supercritical single-phase conditions: influence of hydrogen and substrate concentrations on the process. Appl Catal 210:207–215

    Article  Google Scholar 

  53. Brands DS, Poels EK, Dimian AC, Bliek A (2002) Solvent-based fatty alcohol synthesis using supercritical butane: thermodynamic analysis. J Am Oil Chem Soc 79:75–83

    Article  CAS  Google Scholar 

  54. Brands DS, Pontzen K, Poels E, Dimian A, Bliek A (2002) Solvent-based fatty alcohol synthesis using supercritical butane: flowsheet analysis and process design. J Am Oil Chem Soc 79:85–91

    Article  CAS  Google Scholar 

  55. Zhilong Y (2011) Biodiesel quality, emissions and by-products. In: Montero G (ed) Research on hydrogenation of FAME to fatty alcohols at supercritical conditions, Ch. 11. INTECH, New York, pp 170–180

    Google Scholar 

  56. Liang S, Liu H, Wang W, Jiang T, Zhang Z, Han B (2012) Hydrogenation of methyl laurate to produce lauryl alcohol over Cu/ZnO/Al2O3 with methanol as the solvent and hydrogen source. Pure Appl Chem 84:779–788

    CAS  Google Scholar 

  57. Broadbent H, Campbell G, Bartley W, Johnson J (1959) Rhenium and its compounds as hydrogenation catalysts. III. Rhenium Heptoxide. J Org Chem 24:1847–1854

    Article  CAS  Google Scholar 

  58. Trivedi BC (1978) Catalytic hydrogenation of fatty acids. US Patent 4,104,478

  59. Trivedi BC, Grote D, Mason ThO (1981) Hydrogenation of carboxylic acids and synergistic catalysts. J Am Oil Chem Soc 58:17–20

    Article  CAS  Google Scholar 

  60. Narasimhan CS, Deshpande VM, Ramnarayan K (1989) Selective hydrogenation of methyl oleate to oleyl alcohol on mixed ruthenium-tin boride catalysts. Appl Catal 48:L1–L5

    Article  CAS  Google Scholar 

  61. Yoshino K, Kajiwara Y, Takaishi N, Inamoto Y, Tsuji J (1990) Hydrogenation of carboxylic acids by rhenium–osmium bimettalic catalyst. J Am Oil Chem Soc 67:21–24

    Article  CAS  Google Scholar 

  62. Nagahara E, Itoi Y (1995) Catalyst for direct reduction of carboxylic acid, process for preparation there of and process for preparation of alcohol using the catalyst. US Patent 5,426,246

  63. Tahara K, Nagahara E, Itoi Y, Nishiyama S, Tsuruya S, Masai M (1997) Liquid-phase hydrogenation of carboxylic acid on supported bimetallic Ru–Sn–alumina catalysts. Appl Catal A 154:75–86

    Article  CAS  Google Scholar 

  64. Pouilloux Y, Autin F, Guimon C, Barrault J (1998) Hydrogenation of fatty esters over ruthenium-tin catalysts; characterization and identification of active centers. J Catal 176:215–224

    Article  CAS  Google Scholar 

  65. Pouilloux Y, Autin F, Piccirilli A, Guimon C, Barrault J (1998) Preparation of oleyl alcohol from the hydrogenation of methyl oleate in the presence of cobalt-tin catalysts. Appl Catal A 16:65–75

    Article  Google Scholar 

  66. Toba M, Tanaka S, Niwa S, Mizukami F, Koppany Z, Guczi L, Cheah K-Y, Tang T-S (1999) Synthesis of alcohols and diols by hydrogenation of carboxylic acids and esters over Ru–Sn–Al2O3 catalysts. Appl Catal A 189:243–250

    Article  CAS  Google Scholar 

  67. Miyake T, Makino T, Taniguchi S-I, Watanuki H, Niki T, Shimizu S, Kojima Y, Sano M (2009) Alcohol synthesis by hydrogenation of fatty acid methyl esters on supported Ru–Sn and Rh–Sn catalysts. Appl Catal A 364:108–112

    Article  CAS  Google Scholar 

  68. Echeverri D, Marin J, Restrepo G, Rios L (2009) Characterization and carbonylic hydrogenation of methyl oleate over Ru–Sn/Al2O3: effects of metal precursor and chlorine removal. Appl Catal A 366:342–347

    Article  CAS  Google Scholar 

  69. Zhang L, Zheng X, Li R (2015) Effect of Lanthanum on catalytic performance of Ru/Al2O3 catalyst for hydrogenation of esters to corresponding alcohols. Chem Res Chin Univ 31:615–620

    Article  CAS  Google Scholar 

  70. Rozmysłowicz B, Kirilin A, Aho A, Manyar H, Hardacre C, Warna J, Salmi T, Murzin D (2015) Selective hydrogenation of fatty acids to alcohols over highly dispersed ReOx/TiO2 catalyst. J Catal 328:197–207

    Article  Google Scholar 

  71. Miya B, Sawamoto Y, Hashiba K, Hisamitsu H (1979) Process for preparation for copper-iron-aluminium catalysts and catalysts prepared by the process. US Patent 4,144,198

  72. Miya B, Miya F, Nawashiro Y (1981) Process for preparation of copper-iron-aluminium hydrogenation catalyst. US Patent 4,278,567

  73. Pohl J, Carduck F-J, Goebel G (1989) Acid-resistant catalysts for the direct hydrogenation of fatty acids to fatty alcohols. US Patent 4,855,273

  74. Nierhaus W, Pohl J, Goebel G (1992) Copper/manganese catalysts. WO 1992/04119

  75. Schneider M, Maletz G, Kochloeft K (1993) SiO2-containing copper oxide-chromium oxide catalyst for the hydrogenation of fatty acids and fatty esters. US Patent 5,217,937

  76. Schneider M, Maletz G, Kochloeft K (1993) Acid-resistant copper oxide-chromium oxide catalyst for the hydrogenation of fatty acids and fatty esters. US Patent 5,206,203

  77. Thakur D, Palka E, Sullivan T, Nebesh E, Roberts B (1992) Process for preparing catalyst with copper or zinc and with chromium, molybdenum, tungsten, or vanadium, and product thereof. US Patent 5,134,108

  78. Thakur D, Palka E, Sullivan T, Nebesh E, Roberts B (2000) Hydrogenation catalyst, process for preparing and process of using said catalyst. US Patent 6,054,627

  79. Rieke RD, Thakur DS, Roberts BD, White GT (1997) Fatty methyl ester hydrogenation to fatty alcohol part I: correlation between catalyst properties and activity/selectivity. J Am Oil Chem Soc 74:333–339

    Article  CAS  Google Scholar 

  80. Rieke R, Thakur DS, Roberts BD, White GT (1997) Fatty methyl ester hydrogenation to fatty alcohol part II: process issues. J Am Oil Chem Soc 74:341–345

    Article  CAS  Google Scholar 

  81. Prasad R (1993) A new precursor for the preparation of novel copper chromite catalysts. Stud Surf Sci Catal 75:1747–1750

    Article  CAS  Google Scholar 

  82. Prasad R, Singh P (2011) Applications and preparation methods of copper chromite catalysts: a review. Bull Chem React Eng Catal 6:63–113

    Google Scholar 

  83. Ladebeck J, Regula T (1999) Fatty methyl ester hydrogenation: application of chrome free catalysts. Stud Surf Sci Catal 121:215–220

    Article  CAS  Google Scholar 

  84. Ladebeck J, Regula T (2001) Catalysis of organic reactions. In: Ford ME (ed) Copper-based chromium free hydrogenation catalysts. Marcel Dekker (Publ), New York, pp 403–413

    Google Scholar 

  85. Schneider M, Kochloeft K, Maletz G (1995) Catalyst and process for hydrogenation of carboxylic acid alkyl esters to higher alcohols. US Patent 5,386,066

  86. Schneider M, Kochloeft K, Maletz G (1995) Chromium-free catalyst for the hydrogenation of organic compounds. US Patent 5,403,962

  87. Thakur D, Roberts B, Sullivan T, Vlacheck A (1992) Hydrogenation catalyst, process for preparing and process of using said catalyst. US Patent 5,155,086

  88. Thakur D, Roberts B, Sullivan T, Vlacheck A (1994) Hydrogenation catalyst, process for preparing and process of using said catalyst. US Patent 5, 345,005

  89. Matsuda M, Horio M, Tsukada K (1992) Process for producing hydrogenation catalyst. US patent 5,120,700

  90. van Beijnum J, van Dillen AJ, Geus J (1993) Hydrogenolysis reaction and catalyst suitable therefor. US Patent 5,198,512 A

  91. Roberts BD, Thakur DS, Sullivan TJ, Plundo RA (1993) Hydrogenation catalyst, process for preparing and process for using said catalyst. US Patent 5,243,095

  92. van de Scheur F, Th Staal L H (1994) Effects of zinc addition to silica supported copper catalysts for the hydrogenolysis of esters. Appl Catal 108:63–83

    Article  Google Scholar 

  93. Roberts BD, Thakur DS, Sullivan TJ, Plundo RA (1995) Hydrogenation catalyst and process for preparing same. US Patent 5,418,201

  94. Brands DS, Poels EK, Bliek A (1996) The relation between pre-treatment of promoted copper catalysts and their activity in hydrogenation reactions. Stud Surf Sci Catal 101:1085–1094

    Article  CAS  Google Scholar 

  95. Chen Y, Chang C (1997) Cu-B2O3/SiO2, an effective catalyst for synthesis of fatty alcohol from hydrogenolysis of fatty acid esters. Catal Lett 48:101–104

    Article  CAS  Google Scholar 

  96. Brands DS (1998) The hydrogenolysis of esters to alcohols over copper containing catalysts. Ph. D. thesis, University of Amsterdam, The Netherlands

  97. Tsukada K, Hattori Y, Mimura T (1996) Method for preparing copper-containing hydrogenation reaction catalyst and method for producing alcohol. US Patent 5,554,574

  98. Matsuda M, Horio M, Tsukada K, Sotoya K, Abe H, Tsushima R (1994) The production of fatty alcohols and their amino derivatives from Coco fatty acid methyl esters In: Applewhite T (ed) Proceedings of the World conference on lauric oils: sources, processing, and applications, chapter 7, pp 64–71

  99. Chen J. P. (2005) Preparation and use of non-chrome catalysts for Cu/Cr catalyst applications. US Patent 6,916,457

  100. Chen JP (2014) Copper catalyst for dehydrogenation application. US Patent 8,828,903

  101. Hattori Y, Yamamoto K, Kaita J, Matsuda M, Yamada S (2000) The development of nonchromium catalyst for fatty alcohol production. J Am Oil Soc 77:1283–1288

    Article  CAS  Google Scholar 

  102. Zuzaniuk V, Gruter G-J, Veringa M, Sijpkes A, van der Puil N, De Keijzer J, Hamid SBA (2007) Catalyst and process development for production of oleochemicals from palm oil using high throughput experimentation. North American Catalysis Society meeting

  103. Spikes A, van der Puil N, van der Brink P-J, de Keijzer AHJF, Hamid SBA (2005) Chromium-free catalysts of metallic Cu and at least one second metal. WO 2005070537 A1

  104. bin Ma’amor A, Hamid SBA (2006) Combinatorial technology in heterogenous copper-based catalysts. In: Proceedings of the 1st international conference on natural resources engineering and technology; Putrajaya, Malaysia, pp 255–261

  105. Spikes A, van der Puil N, van der Brink P-J, Hamid SBA, de Keijzer AHJF (2007) Chromium-free catalysts of metallic Cu and at least one second metal. US 2007/0207921 A1

  106. Spikes A, van der Puil N, van der Brink P-J, Hamid SBA, de Keijzer AHJF (2010) Chromium-free catalysts of metallic Cu and at least one second metal. US Patent Application 2010/0087312 A1

  107. Roberts BD, Carrick WJ, Thakur DS (1999) Shaped hydrogenation catalyst and processes for their preparation and use. US Patent 5,977,010

  108. Nebesh E, Kelly DG, Novak LT (1992) Copper chromite catalyst and process for preparation said catalyst. US Patent 5,124,295

  109. Thakur DS, Carrick WJ (2015) Copper chromite hydrogenation catalysts for production of fatty alcohols. US Patent 9,120,086

  110. Huang H, Cao G, Wang S (2014) An evaluation of alkylthiols and dialkyl disulfides on deactivation of Cu/Zn catalyst in hydrogenation of dodecyl methyl ester to dodecanol. J Ind Eng Chem 20:988–993

    Article  Google Scholar 

  111. Thakur DS, Roberts BD, White GT, Rieke RD (1999) Fatty methyl ester hydrogenation to fatty alcohol: reaction inhibition by glycerine and monoglyceride. J Am Oil Chem Soc 76:995–1000

    Article  CAS  Google Scholar 

  112. van de Scheur FT, Sai GU-A, Bliek A, Staal L (1995) The effect of free fatty acid on the reactivity of copper-based catalysts for the hydrogenolysis of fatty acid methyl esters. J Am Oil Chem Soc 72:1027–1031

    Article  Google Scholar 

  113. Brands DS, Sai GU-A, Poels EK, Bliek A (1999) Sulfur deactivation of fatty ester hydrogenolysis catalysts. J Catal 186:169–180

    Article  CAS  Google Scholar 

  114. Twigg MV, Spencer MS (2001) Deactivation of supported copper metal catalysts for hydrogenation reactions. Appl Catal A 212:161–174

    Article  CAS  Google Scholar 

  115. Tike MA, Mahajani VV (2007) Kinetics of hydrogenation of palm stearin fatty acid over Ru/Al2O3 catalyst in presence of small quantity of water. Ind J Chem Technol 14:52–63

    CAS  Google Scholar 

  116. Huang H, Cao G, Fan C, Wang S, Wang S (2009) Effect of water on Cu/Zn catalyst for hydrogenation of fatty methyl ester to fatty alcohol. Korean J Chem Eng 26:1574–1579

    Article  CAS  Google Scholar 

  117. Huang H, Wang S, Wang S, Cao G (2010) Deactivation mechanism of Cu/Zn catalyst poisoned by organic chlorides in hydrogenation of fatty methyl ester to fatty alcohol. Catal Lett 134:351–357

    Article  CAS  Google Scholar 

  118. Huang H, Cao G, Wang S (2013) An evaluation of trimethyl phosphate on deactivation of Cu/Zn catalyst in hydrogenation of dodecyl methyl ester. Korean J Chem Eng 30:1710–1715

    Article  CAS  Google Scholar 

  119. Haldal JA, Mork P (1982) Chlorine-containing compounds as copper catalyst poisons. J Am Oil Chem Soc 59:396–398

    Article  Google Scholar 

  120. Kandel K, Chaudhary U, Nelson NC, Slowing II (2015) Synergistic interaction between oxides of copper and iron for production of fatty alcohols from fatty acids. ACS Catal 5:6719–6723

    Article  CAS  Google Scholar 

  121. He L, Li X, Lin W, Li W, Cheng H, Yu Y, Fujita S-I, Arai M, Zhao F (2014) The selective hydrogenation of ethyl stearate to stearyl alcohol over Cu/Fe bimetallic catalysts. J Mol Catal A: Chem 392:143–149

    Article  CAS  Google Scholar 

  122. Chakraborty S, Dai H, Bhattacharya P, Fairweather NT, Gibson MS, Krause JA, Guan H (2014) Iron-based catalysts for the hydrogenation of esters to alcohols. J Am Chem Soc 136:7869–7872

    Article  CAS  Google Scholar 

  123. Tan X, Wang Y, Liu Y, Wang F, Shi L, Lee K-H, Lin Z, Lv H, Zhang X (2015) Highly efficient tetradentate ruthenium catalyst for ester reduction: especially for hydrogenation of fatty acid esters. Org Lett 17:454–457

    Article  CAS  Google Scholar 

  124. Fairweather NT, Gibson MS, Guan H (2014) Homogeneous hydrogenation of fatty acid methyl esters and natural oils under neat conditions. Organometallics 34:335–339

    Article  Google Scholar 

  125. Acosta-Ramirez A, Bertoli M, Gusev DM, Schlaf M (2012) Homogenous catalytic hydrogenation of long-chain esters by an osmium pincer complex and its potential application in the direct conversion of triglycerides into fatty alcohols. Green Chem 4:1178–1188

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepak S. Thakur.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thakur, D.S., Kundu, A. Catalysts for Fatty Alcohol Production from Renewable Resources. J Am Oil Chem Soc 93, 1575–1593 (2016). https://doi.org/10.1007/s11746-016-2902-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11746-016-2902-x

Keywords

Navigation