Skip to main content
Log in

Omega-3 Polyunsaturated Fatty Acids Concentration Using Synthesized Poly-Vinylidene Fluoride (PVDF) Asymmetric Membranes

  • Original Paper
  • Published:
Journal of the American Oil Chemists' Society

Abstract

In this study, the performance of synthesized poly-vinylidene fluoride (PVDF) membranes to concentrate ω3-polyunsaturated fatty acids from lantern fish oil was evaluated. The PVDF membranes were prepared via the phase inversion method. The effect of coagulation bath temperatures (CBT: 0, 25 and 50 °C) on the morphology of the membranes and the ω3-PUFA concentration process was examined and discussed. Scanning electron microscopy images showed that an increasing coagulation bath temperature (CBT) leads to a more porous structure in the membranes as well as a larger pore diameter. ω3-PUFA concentration was evaluated at different pressures and temperatures, ranging from 3 to 5 bar and 20 to 40 °C, respectively. The PVDF membrane prepared at a CBT of 0 °C (M1) resulted in the best ω3-PUFA concentration (40.4 %) at a pressure and temperature of 5 bar and 30 °C, respectively. Conversely, the PVDF membrane formed at CBT of 50 °C (M3) showed the highest oil flux. In addition, fouling analysis indicates that complete pore blocking was the predominant mechanism for the M1 membrane and intermediate pore blocking for the M2 and M3 membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Feltes MMC, Oliveira JV, Treichel H, Block JM, de Oliveira D, Ninow JL (2010) Assessment of process parameters on the production of diglycerides rich in omega-3 fatty acids through the enzymatic glycerolysis of fish oil. Eur Food Res Technol 231:701–710

    Article  CAS  Google Scholar 

  2. Ackman RG (2006) Losses of DHA from high temperatures of columns during GLC of methyl esters of long-chain omega-3 fatty acids. J Am Oil Chem Soc 83:1069–1070

    Article  CAS  Google Scholar 

  3. Kolanowski W, Laufenberg G (2006) Enrichment of food products with polyunsaturated fatty acids by fish oil addition. Eur Food Res Technol 222:427–477

    Google Scholar 

  4. Rodriguez NR, Beltran S, Jaime I, Diego SM, Sanz MT, Carballido JR (2010) Production of omega-3 polyunsaturated fatty acid concentrates: a review. Innov Food Sci Emerg Technol 11:1–12

    Article  Google Scholar 

  5. Homayooni B, Sahari MA, Barzegar M (2014) Concentrations of omega-3 fatty acids from rainbow sardine fish oil by various methods. Int Food Res J 21:743–748

    Google Scholar 

  6. Soleimanian Y, Sahari MA, Barzegar M (2015) Influence of processing parameters on physicochemical properties of fractionated fish oil at low temperature crystallization. J Nut Food Sci 45:2–19

    Article  Google Scholar 

  7. Linder M, Matouba E, Fanni J, Parmentier M (2002) Enrichment of salmon oil with n-3 PUFA by lipolysis, filtration and enzymatic re-esterification. Eur J Lipid Sci Technol 104:455–462

    Article  CAS  Google Scholar 

  8. Abedini R, Omidkhah M, Dorosti F (2014) Hydrogen separation and purification with poly (4-methyl-1-pentyne)/MIL 53 mixed matrix membrane based on reverse selectivity. Int J Hydrogen Energy 39:7897–7909

    Article  CAS  Google Scholar 

  9. Peng J, Su Y, Chen W, Shi Q, Jiang Z (2010) Effects of coagulation bath temperature on the separation performance and antifouling property of poly(ether sulfone) ultrafiltration membranes. Ind Eng Chem Res 49:4858–4864

    Article  CAS  Google Scholar 

  10. Dorosti F, Omidkhah M, Abedini R (2014) Fabrication and characterization of Matrimid/MIL-53 mixed matrix membrane for CO2/CH4 separation. Chem Eng Res Des 92:2439–2448

    Article  CAS  Google Scholar 

  11. Tres MV, Racoski JC, Luccio MD, Oliveira JV, Treichel H, Oliveira D, Mazutti MA (2014) Separation of soybean oil/n-hexane and soybean oil/n-butane mixtures using ceramic membranes. Food Res Int 63:33–41

    Article  CAS  Google Scholar 

  12. Kumar NSK, Bhowmick DN (1996) Separation of fatty acids/triacylglycerol by membranes. J Am Oil Chem Soc 73:399–401

    Article  CAS  Google Scholar 

  13. Dorosti F, Omidkhah M, Abedini R (2015) Enhanced CO2/CH4 separation properties of asymmetric mixed matrix membrane by incorporating nano-porous ZSM-5 and MIL-53 particles into Matrimid®5218. J Nat Gas Sci Eng 25:88–102

    Article  CAS  Google Scholar 

  14. Azmi RA, Goh PS, Ismail AF, Lau WJ, Ng BC, Othman NH, Noor AM, Yusoff MSA (2015) Deacidification of crude palm oil using PVA-crosslinked PVDF membrane. J Food Eng 166:165–173

    Article  CAS  Google Scholar 

  15. Awanis Hashim N, Liu Y, Li K (2011) Stability of PVDF hollow fiber membranes in sodium hydroxide aqueous solution. Chem Eng Sci 66:1565–1575

    Article  CAS  Google Scholar 

  16. Abedini R, Mousavi SM, Aminzadeh R (2012) Effect of sonochemical synthesized TiO2 nanoparticles and coagulation bath temperature on morphology, thermal stability and pure water flux of asymmetric cellulose acetate nanocomposite membranes prepared via phase inversion method. Chem Ind Chem Eng Q 18:385–398

    Article  CAS  Google Scholar 

  17. Metcalfe L, Schmitz AA, Pelka JA (1966) Rapid preparation of methyl esters from lipid for gas, chromatography. Anal Chem 38:514–515

    Article  CAS  Google Scholar 

  18. Cassano A, Donato L, Drioli E (2007) Ultrafiltration of kiwifruit juice: operating parameters, juice quality and membrane fouling. J Food Eng 79:613–621

    Article  CAS  Google Scholar 

  19. Field RW, Wu JJ (2011) Modelling of permeability loss in membrane filtration: re-examination of fundamental fouling equations and their link to critical flux. Desalination 283:68–74

    Article  CAS  Google Scholar 

  20. Abedini R, Mousavi SM, Aminzadeh R (2011) A novel cellulose acetate (CA) membrane using TiO2 nanoparticles: preparation, characterization and permeation study. Desalination 277:40–45

    Article  CAS  Google Scholar 

  21. Saljoughi E, Amirilargani M, Mohammadi T (2009) Effect of poly(vinyl pyrrolidone) concentration and coagulation bath temperature on the morphology, permeability, and thermal stability of asymmetric cellulose acetate membranes. J Appl Polym Sci 111:2537–2544

    Article  CAS  Google Scholar 

  22. Shahidi F (2005) Bailey’s industrial oil and fat products. Wiley, New York

    Book  Google Scholar 

  23. Ghasemian S, Sahari MA, Barzegar M, Ahmadi Gavlighi H (2015) Concentration of omega-3 polyunsaturated fatty acids by polymeric membrane. Int J Food Sci Technol 50:2411–2418

    Article  CAS  Google Scholar 

  24. Rupasinghe HPV, Erkan N, Yasmin A (2010) Antioxidant protection of eicosapentaenoic acid and fish oil oxidation by polyphenolic-enriched apple skin extract. J Agric Food Chem 58:1233

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Ali Sahari.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghasemian, S., Sahari, M.A., Barzegar, M. et al. Omega-3 Polyunsaturated Fatty Acids Concentration Using Synthesized Poly-Vinylidene Fluoride (PVDF) Asymmetric Membranes. J Am Oil Chem Soc 93, 1201–1210 (2016). https://doi.org/10.1007/s11746-016-2876-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11746-016-2876-8

Keywords

Navigation