Skip to main content
Log in

Recovery and Removal of Phenolic Compounds from Olive Mill Wastewater

  • Review
  • Published:
Journal of the American Oil Chemists' Society

Abstract

Food wastes are today considered as a cheap source of valuable components since the existent technologies allow the recovery of target compounds and their recycling inside the food chain as functional additives in different products. Olive mill wastewater (OMW) is generated from olive oil extraction systems. It has high added-value compounds namely phenolics, recalcitrants, pectin, and some important enzymes. It causes a certain amount of toxicity/phytotoxicity because of its phenolic compounds. OMW also has significant impacts when discharged directly into surface waters. Therefore, the treatment of olive mill wastewater is very much needed. Several types of techniques have been investigated for OMW treatment along with recovery and removal of its phenolic compounds. Among these techniques, physical ones are utilized for extraction purposes, while chemical and biological methods are applied in order to diminish organic load. In this review, current status and recent developments in the recovery and removal of phenolic compounds from OMW have been critically examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. The range of some important metals in OMW are: Pb (6.7–10 µg/L), Cd (0.03–10 µg/L), Fe (0.45–20 mg/L), Zn (1.7–4.98 mg/L), Cu (0.49–2.96 mg/L), Mn (0.46–20 mg/L), Mg (0.03–0.17 g/L), Ca (0.03–0.29 g/L), K (0.73–6.1 g/L), Cl (0.76–1 g/L), Na (0.03–0.13 g/L).

  2. Fenton oxidation is achieved from the reaction between H2O2 and a ferrous salts under acidic conditions according to the following reaction:

    Fe2 + + H2O2 → Fe3+ + OH + OH· [1]

    The UV radiation can improve the Fenton reaction, according to the reaction [2]:

    H2O2 +h_ → 2OH·[2].

References

  1. Dias AA, Bezerra RM, Pereira AN (2004) Activity and elution profile of laccase during biological decolorization and dephenolization of olive mill wastewater. Bioresour Technol 92:7–13

    CAS  Google Scholar 

  2. Galanakis CM (2011) Olive fruit dietary fiber: components, recovery and applications. Trends Food Sci Technol 22:175–184

    CAS  Google Scholar 

  3. Takaç S, Karakaya A (2009) Recovery of phenolic antioxidants from olive mill wastewater. Recent Pat Chem Eng 2:230–237

    Google Scholar 

  4. Paraskeva P, Diamadopoulos E (2006) Technologies for olive mill wastewater (OMW) treatment: a review. J Chem Technol Biotechnol 81:1475–1485

    CAS  Google Scholar 

  5. El-Abbassi A, Kiai H, Hafidi A (2012) Phenolic profile and antioxidant activities of olive mill wastewater. Food Chem 132:406–412

    Google Scholar 

  6. Azaizeh H, Halahlih F, Najami N, Brunner D, Faulstich M, Tafesh A (2012) Antioxidant activity of phenolic fractions in olive mill wastewater. Food Chem 134:2226–2234

    CAS  Google Scholar 

  7. McNamara CJ, Anastasiou CC, O’Flaherty V, Mitchell R (2008) Bioremediation of olive mill wastewater. Int Biodeterior Biodegradation 61:127–134

    CAS  Google Scholar 

  8. Lafi WK, Shannak B, Al-Shannag M, Al-Anber Z, Al-Hasan M (2009) Treatment of olive mill wastewater by combined advanced oxidation and biodegradation. Sep Purif Technol 70:141–146

    CAS  Google Scholar 

  9. Fernández-Bolaños J, Fernandez-Díez MJ, Morreno MR, Serrano AG, Romero TP (1983) A sucares y polioles en aceitunas verdes III. Gracas y Aceites 34:168–171

    Google Scholar 

  10. Fernández-Bolaños J, Rodríguez G, Gómez E, Guillén R, Jiménez A, Heredia A, Rodríguez R (2004) Total recovery of the waste of two-phase olive oil processing: isolation of added-value compounds. J Agric Food Chem 52:5849–5855

    Google Scholar 

  11. Marsilio V, Campestre C, Lanza B (2001) Sugar and polyol composition of some European olive fruit varieties (Olea europaea L., cv Kalamata) in different ripening stages. Food Chem 72:485–490

    CAS  Google Scholar 

  12. Galanakis CM, Tornberg E, Gekas V (2010) A study of the recovery of the dietary fibres from olive mill wastewater and the gelling ability of the soluble fibre fraction. LWT Food Sci Technol 43:1009–1017

    CAS  Google Scholar 

  13. Galanakis CM, Tornberg E, Gekas V (2010) Dietary fiber suspensions from olive mill wastewater as potential fat replacements in meatballs. LWT Food Sci Technol 43:1018–1025

    CAS  Google Scholar 

  14. He J, Alister-Briggs M, Td Lyster, Jones GP (2012) Stability and antioxidant potential of purified olive mill wastewater extracts. Food Chem 131:1312–1321

    CAS  Google Scholar 

  15. De Marco E, Savarese M, Paduano A, Sacchi R (2007) Characterization and fractionation of phenolic compounds extracted from olive oil mill wastewaters. Food Chem 104:858–867

    Google Scholar 

  16. Zbakh H, El Abbassi A (2012) Potential use of olive mill wastewater in the preparation of functional beverages: a review. J Funct Foods 4:53–65

    CAS  Google Scholar 

  17. Obied HK, Allen MS, Bedgood DR, Prenzler PD, Robards K, Stockmann R (2005) Bioactivity and analysis of biophenols recovered from olive mill waste. J Agric Food Chem 53:823–837

    CAS  Google Scholar 

  18. Boskou D (2008) Phenolic compounds in olives and olive oil. In: Boskou D (ed) Olive oil minor constituents and health. CRC Press, Boca Raton, pp 11–44

  19. Obied H, Bedgood D Jr, Prenzler P, Robards K (2007) Bioscreening of Australian olive mill waste extracts: biophenol content, antioxidant, antimicrobial and molluscicidal activities. Food Chem Toxicol 45:1238–1248

    CAS  Google Scholar 

  20. Balice V, Cera O (1984) Acidic phenolic fraction of the olive vegetation water determined by a gas-chromatographic method. Grasas Aceites 35:178–180

    CAS  Google Scholar 

  21. D’Alessandro F, Marucchini C, Minuti L, Zadra C, Taticchi A, (2005) GC/MS-SIM analysis of phenolic compounds in olive oil waste waters. Ital J Food Sci 17:83–88

    Google Scholar 

  22. Fiorentino A, Gentili A, Isidori M, Monaco P, Nardelli A, Parrella A, Temussi F (2003) Environmental effects caused by olive mill wastewaters: toxicity comparison of low-molecular-weight phenol components. J Agric Food Chem 51:1005–1009

    CAS  Google Scholar 

  23. Mulinacci N, Romani A, Galardi C, Pinelli P, Giaccherini C, Vincieri F (2001) Polyphenolic content in olive oil waste waters and related olive samples. J Agric Food Chem 49:3509–3514

    CAS  Google Scholar 

  24. DellaGreca M, Previtera L, Temussi F, Zarrelli A (2004) Low-molecular-weight components of olive oil mill waste-waters. Phytochem Anal 15:184–188

    CAS  Google Scholar 

  25. Knupp G, Rucker G, Ramos-Cormenzana A, Hoyos SG, Neugebauer M, Ossenkop T (1996) Int Biodeterior Biodegrad 38:277–282

    CAS  Google Scholar 

  26. Boukhoubza F, Jail A, Korchi F, Idrissi LL, Hannache H, Duarte JC, Hassani L, Nejmeddine A (2009) Application of lime and calcium hypochlorite in the dephenolisation and discolouration of olive mill wastewater. J Environ Manage 91:124–132

    CAS  Google Scholar 

  27. Bouaziz M, Hammami H, Bouallagui Z, Jemai H, Sayadi S (2008) Production of antioxidants from olive processing by-products. Electron J Environ Agric Food Chem 7:3231–3236

    CAS  Google Scholar 

  28. Capasso R, Evidente A, Scognamiglio F (1992) A simple thin layer chromatographic method to detect the main polyphenols occurring in olive oil vegetation waters. Phytochem Anal 3:270–275

    CAS  Google Scholar 

  29. Japon-Lujan R, de Castro MDL (2007) Static-dynamic superheated liquid extraction of hydroxytyrosol and other biophenols from alperujo (a semisolid residue of the olive oil industry). J Agric Food Chem 55:3629–3634

    CAS  Google Scholar 

  30. Vinciguerra V, D’Annibale A, Gàcs-Baitz E, Monache GD (1997) Biotransformation of tyrosol by whole-cell and cell-free preparation of Lentinus edodes. J Mol Catal B Enzym 3:213–220

    CAS  Google Scholar 

  31. Lo Scalzo R, Scarpati ML (1993) A new secoiridoid from olive waste-waters. J Nat Prod 56:621–623

    CAS  Google Scholar 

  32. Servili M, Baldioli M, Selvaggini R, Macchioni A, Montedoro G (1999) Phenolic compounds of olive fruit: one-and two-dimensional nuclear magnetic resonance characterization of nüzhenide and its distribution in the constitutive parts of fruit. J Agric Food Chem 47:12–18

    CAS  Google Scholar 

  33. Obied HK, Karuso P, Prenzler PD, Robards K (2007) Novel secoiridoids with antioxidant activity from Australian olive mill waste. J Agric Food Chem 55:2848–2853

    CAS  Google Scholar 

  34. Obied HK, Prenzler PD, Konczak I, Rehman AU, Robards K (2009) Chemistry and bioactivity of olive biophenols in some antioxidant and antiproliferative in vitro bioassays. Chem Res Toxicol 22:227–234

    CAS  Google Scholar 

  35. Obied HK, Bedgood DR Jr, Prenzler PD, Robards K (2007) Chemical screening of olive biophenol extracts by hyphenated liquid chromatography. Anal Chim Acta 603:176–189

    CAS  Google Scholar 

  36. Visioli F, Romani A, Mulinacci N, Zarini S, Conte D, Vincieri FF, Galli C (1999) Antioxidant and other biological activities of olive mill waste waters. J Agric Food Chem 47:3397–3401

    CAS  Google Scholar 

  37. Galanakis CM (2012) Recovery of high added-value components from food wastes: conventional, emerging technologies and commercialized applications. Trends Food Sci Technol 26:68–87

    Google Scholar 

  38. Lesage-Meessen L, Navarro D, Maunier S, Sigoillot JC, Lorquin J, Delattre M, Simon JL, Asther M, Labat M (2001) Simple phenolic content in olive oil residues as a function of extraction systems. Food Chem 75:501–507

    CAS  Google Scholar 

  39. Suárez M, Romero M-P, Ts Ramo, Macià A, Motilva M-J (2009) Methods for preparing phenolic extracts from olive cake for potential application as food antioxidants. J Agric Food Chem 57:1463–1472

    Google Scholar 

  40. Léger CL, Kadiri-Hassani N, Descomps B (2000) Decreased superoxide anion production in cultured human promonocyte cells (THP-1) due to polyphenol mixtures from olive oil processing wastewaters. J Agric Food Chem 48:5061–5067

    Google Scholar 

  41. Firuzi O, Giansanti L, Vento R, Seibert C, Petrucci R, Marrosu G, Agostino R, Sasol L (2003) Hypochlorite scavenging activity of hydroxycinnamic acids evaluated by a rapid microplate method based on the measurement of chloramines. J Pharm Pharmacol 55:1021–1027

    CAS  Google Scholar 

  42. Visioli F, Galli G, Caruso D (2002) Biological activities and metabolic fate of olive oil phenols. Eur J Lipid Sci Technol 104:677–684

    CAS  Google Scholar 

  43. Jiménez-Alvarez D, Giuffrida F, Vanrobaeys F, Golay PA, Cotring C, Lardeau A, Keely BJ (2008) High-throughput methods to assess lipophilic and hydrophilic antioxidant capacity of food extracts in vitro. J Agric Food Chem 56:3470–3477

    Google Scholar 

  44. Mcdonald S, Prenzler PD, Antolovich M, Robards K (2001) Phenolic content and antioxidant activity of olive extracts. Food Chem 73:73–84

    CAS  Google Scholar 

  45. Meyer AS, Heinonen M, Frankel EN (1998) Antioxidant interactions of catechin, cyanidin, caffeic acid, quercetin, and ellagic acid on human LDL oxidation. Food Chem 61:71–75

    CAS  Google Scholar 

  46. Nardini M, D’Aquino M, Tomassi G, Gentili V, Di Felice M, Scaccini C (1995) Inhibition of human low-density lipoprotein oxidation by caffeic acid and other hydroxycinnamic acid derivatives. Free Radical Biol Med 19:541–552

    CAS  Google Scholar 

  47. Visioli F, Vinceri FF, Galli C (1995) Waste-waters from olive oil production are rich in natural antioxidants. Experientia 51:32–34

    CAS  Google Scholar 

  48. Deiana M, Aruoma OI, Bianchi MDP, Spencer JPE, Kaur H, Halliwell B, Aeschbach R, Banni S, Dessi MA, Corongiu FP (1999) Inhibition of peroxynitrite dependent DNA base modification and tyrosine nitration by the extra virgin olive oil-derived antioxidant hydroxytyrosol. Free Radical Biol Med 26:762–769

    CAS  Google Scholar 

  49. Quiles JL, Farquharson AJ, Simpson DK, Grant I, Wahle KW (2002) Olive oil phenolics: effects on DNA oxidation and redox enzyme mRNA in prostate cells. Br J Nutr 88:223–224

    Google Scholar 

  50. Ziogas V, Tanou G, Molassiotis A, Diamantidis G, Vasilakakis M (2010) Antioxidant and free radical-scavenging activities of phenolic extracts of olive fruits. Food Chem 120:1097–1103

    CAS  Google Scholar 

  51. Obied HK, Allen MS, Bedgood DR, Prenzler PD, Robards K (2005) Investigation of Australian olive mill waste for recovery of biophenols. J Agric Food Chem 53:9911–9920

    CAS  Google Scholar 

  52. Bouzid O, Navarro D, Roche M, Asther M, Haon M, Delattre M, Lorquin J, Labat M, Asther M, Lesage-Meessen L (2005) Fungal enzymes as a powerful tool to release simple phenolic compounds from olive oil by-product. Process Biochem 40:1855–1862

    CAS  Google Scholar 

  53. Manna C, Migliardi V, Golino P, Scognamiglio A, Galleti P, Chiariello M, Zappia V (2004) Oleuropein prevents oxidative myocardial injury induced by ischemia and reperfusion. J Nutr Biochem 15:461–466

    CAS  Google Scholar 

  54. Ruíz-Gutiérrez V, Muriana FJ, Maestro R, Graciani E (1995) Oleuropein on lipid and fatty acid composition of rat heart. Nutr Res 15:37–51

    Google Scholar 

  55. European Food Safety Authority (EFSA) (2011) Scientific Opinion on the substantiation of health claims related to polyphenols in olive and protection of LDL particles from oxidative damage (ID 1333, 1638, 1639, 1696, 2865), maintenance of normal blood HDL cholesterol concentrations (ID 1639), maintenance of normal blood pressure (ID 3781), “anti-inflammatory properties” (ID 1882), “contributes to the upper respiratory tract health” (ID 3468), “can help to maintain a normal function of gastrointestinal tract” (3779), and “contributes to body defences against external agents” (ID 3467) pursuant to Article 13(1) of Regulation (EC) No 1924/2006 EFSA J 9:2033

  56. Visioli F, Caruso D, Plasmati E, Patelli R, Mulinacci N, Romani A, Galli G, Galli C (2001) Hydroxytyrosol, as a component of olive mill waste water, is dose-dependently absorbed and increases the antioxidant capacity of rat plasma. Free Radical Res 34:301–305

    CAS  Google Scholar 

  57. Casalino E, Calzaretti G, Sblano C, Landriscina V, Tecce MF, Landriscina C (2002) Antioxidant effect of hydroxytyrosol (DPE) and Mn2+ in liver of cadmium-intoxicated rats. Comp Biochem Physiol C Toxicol Pharmacol 133:625–632

    Google Scholar 

  58. De Leonardis A, Macciola V, Lembo G, Aretini A, Nag A (2007) Studies on oxidative stabilisation of lard by natural antioxidants recovered from olive-oil mill wastewater. Food Chem 100:998–1004

    Google Scholar 

  59. Yangui T, Sayadi S, Rhouma A, Dhouib A (2010) Potential use of hydroxytyrosol-rich extract from olive mill wastewater as a biological fungicide against Botrytis cinerea in tomato. J Pest Sci 83:437–445

    Google Scholar 

  60. Stamatelatou K, Kopsahelis A, Blika PS, Paraskeva CA, Lyberatos G (2009) Anaerobic digestion of olive mill wastewater in a periodic anaerobic baffled reactor (PABR) followed by further effluent purification via membrane separation technologies. J Chem Technol Biotechnol 84:909–917

    CAS  Google Scholar 

  61. Un UT, Altay U, Koparal AS, Ogutveren UB (2008) Complete treatment of olive mill wastewaters by electrooxidation. Chem Eng J 139:445–452

    CAS  Google Scholar 

  62. Akdemir EO, Ozer A (2008) Application of a statistical technique for olive oil mill wastewater treatment using ultrafiltration process. Sep Purif Technol 62:222–227

    CAS  Google Scholar 

  63. Drouiche M, Le Mignot V, Lounici H, Belhocine D, Grib H, Pauss A, Mameri N (2004) A compact process for the treatment of olive mill wastewater by combining OF and UV/H2O2 techniques. Desalination 169:81–88

    CAS  Google Scholar 

  64. Obied HK, Prenzler PD, Robards K (2008) Potent antioxidant biophenols from olive mill waste. Food Chem 111:171–178

    CAS  Google Scholar 

  65. El-Abbassi A, Hafidi A, García-Payo MC, Khayet M (2009) Concentration of olive mill wastewater by membrane distillation for polyphenols recovery. Desalination 245:670–674

    CAS  Google Scholar 

  66. Crea R (2002) Method of obtaining a hydroxytyrosol-rich composition from vegetation water, World Intellectual Property Organization, WO/2002/0218310

  67. Fernández-Bolaños J, Heredia A, Rodríguez G, Rodríguez R, Guillén R, Jiménez A (2002) Method for obtaining purified hydroxytyrosol from products and by-products derived from the olive tree, World Intellectual Property Organization, WO/2002/064537

  68. Tornberg E, Galanakis CM (2008) Olive Waste Recovery, World Intellectual Property Organization, WO/2008/082343

  69. Cassano A, Conidi C, Drioli E (2011) Comparison of the performance of UF membranes in olive mill wastewaters treatment. Water Res 45:3197–3204

    CAS  Google Scholar 

  70. Galanakis CM, Markouli E, Gekas V (2013) Recovery and fractionation of different phenolic classes from winery sludge using ultrafiltration. Sep Purif Technol 107:245–251

    Google Scholar 

  71. Mudimu OA, Peters M, Braun FBAG (2012) Overview of membrane processes for the recovery of polyphenols from olive mill wastewater. Am J Environ Sci 8:195–201

    Google Scholar 

  72. Galanakis CM, Tornberg E, Gekas V (2010) Clarification of high-added value products from olive mill wastewater. J Food Eng 99:190–197

    CAS  Google Scholar 

  73. Lafka T-I, Lazou AE, Sinanoglou VJ, Lazos ES (2011) Phenolic and antioxidant potential of olive oil mill wastes. Food Chem 125:92–98

    CAS  Google Scholar 

  74. Reis MTA, de Freitas OMF, Ismael MRC, Carvalho JMR (2007) Recovery of phenol from aqueous solutions using liquid membranes with Cyanex 923. J Membr Sci 305:313–324

    CAS  Google Scholar 

  75. Galanakis CM, Fountoulis G, Gekas V (2012) Nanofiltration of brackish groundwater by using a polypiperazine membrane. Desalination 286:277–284

    CAS  Google Scholar 

  76. Patsioura A, Galanakis CM, Gekas V (2011) Ultrafiltration optimization for the recovery of β-glucan from oat mill waste. J Membr Sci 373:53–63

    CAS  Google Scholar 

  77. Achak M, Hafidi A, Ouazzani N, Sayadi S, Mandi L (2009) Low cost biosorbent “banana peel” for the removal of phenolic compounds from olive mill wastewater: kinetic and equilibrium studies. J Hazard Mater 166:117–125

    CAS  Google Scholar 

  78. Sabbah I, Marsook T, Basheer S (2004) The effect of pretreatment on anaerobic activity of olive mill wastewater using batch and continuous systems. Process Biochem 39:1947–1951

    CAS  Google Scholar 

  79. Scoma A, Bertin L, Zanaroli G, Fraraccio S, Fava F (2011) A physicochemical–biotechnological approach for an integrated valorization of olive mill wastewater. Bioresour Technol 102:10273–10279

    CAS  Google Scholar 

  80. Singh KP, Malik A, Sinha S, Ojha P (2008) Liquid-phase adsorption of phenols using activated carbons derived from agricultural waste material. J Hazard Mater 150:626–641

    CAS  Google Scholar 

  81. Santi CA, Cortes S, D’Acqui LP, Sparvoli E, Pushparaj B (2008) Reduction of organic pollutants in olive mill wastewater by using different mineral substrates as adsorbents. Bioresour Technol 99:1945–1951

    CAS  Google Scholar 

  82. Queimada AJ, Mota FL, Pinho SP, Macedo EA (2009) Solubilities of biologically active phenolic compounds: measurements and modeling. J Phys Chem B 113:3469–3476

    CAS  Google Scholar 

  83. Tsakona S, Galanakis CM, Gekas V (2012) Hydro-ethanolic mixtures for the recovery of phenols from Mediterranean plant materials. Food Bioprocess Technol 5:1384–1393

    CAS  Google Scholar 

  84. Galanakis C, Goulas V, Tsakona S, Manganaris G, Gekas V (2013) A knowledge base for the recovery of natural phenols with different solvents. Int J Food Prop 16:382–396

    Google Scholar 

  85. Charis M. Galanakis, Eva Tornberg, Gekasc V (2010) Recovery and preservation of phenols from olive waste in ethanolic extracts. Soc Chem Ind 85:1148–1155

  86. Khoufi S, Aloui F, Sayadi S (2008) Extraction of antioxidants from olive mill wastewater and electro-coagulation of exhausted fraction to reduce its toxicity on anaerobic digestion. J Hazard Mater 151:531–539

    CAS  Google Scholar 

  87. Allouche N, Fki I, Sayadi S (2004) Toward a high yield recovery of antioxidants and purified hydroxytyrosol from olive mill wastewaters. J Agric Food Chem 52:267–273

    CAS  Google Scholar 

  88. Feki M, Allouche N, Bouaziz M, Gargoubi A, Sayadi S (2006) Effect of storage of olive mill wastewaters on hydroxytyrosol concentration. Eur J Lipid Sci Technol 108:1021–1027

    CAS  Google Scholar 

  89. Katsoyannos E, Chatzilazarou A, Gortzi O, Lalas S, Konteles S, Tataridis P (2006) Application of cloud point extraction using surfactants in the isolation of physical antioxidants (phenols) from olive mill wastewater. Fresenius Environ Bull 15:1122

    CAS  Google Scholar 

  90. Gortzi O, Lalas S, Chatzilazarou A, Katsoyannos E, Papaconstandinou S, Dourtoglou E (2008) Recovery of natural antioxidants from olive mill wastewater using Genapol-X080. J Am Oil Chem Soc 85:133–140

    CAS  Google Scholar 

  91. Galanakis CM (2013) Emerging technologies for the production of nutraceuticals from agricultural by-products: a viewpoint of opportunities and challenges. Food Bioprod Process (in press)

  92. Rizzo L, Lofrano G, Grassi M, Belgiorno V (2008) Pre-treatment of olive mill wastewater by chitosan coagulation and advanced oxidation processes. Sep Purif Technol 63:648–653

    CAS  Google Scholar 

  93. Kestioğlu K, Yonar T, Azbar N (2005) Feasibility of physico-chemical treatment and advanced oxidation processes (AOPs) as a means of pretreatment of olive mill effluent (OME). Process Biochem 40:2409–2416

    Google Scholar 

  94. Kiril Mert B, Yonar T, Yalili Kiliē M, Kestioglu K (2010) Pre-treatment studies on olive oil mill effluent using physicochemical, Fenton and Fenton-like oxidations processes. J Hazard Mater 174:122–128

    Google Scholar 

  95. Badawy MI, Gohary FE, Ghaly MY, Ali MEM (2009) Enhancement of olive mill wastewater biodegradation by homogeneous and heterogeneous photocatalytic oxidation. J Hazard Mater 169:673–679

    CAS  Google Scholar 

  96. Khoufi S, Aloui F, Sayadi S (2009) Pilot scale hybrid process for olive mill wastewater treatment and reuse. Chem Eng Process 48:643–650

    CAS  Google Scholar 

  97. Jaouani A, Sayadi S, Vanthournhout M, Penninckx MJ (2003) Potent fungi for decolourisation of olive oil mill wastewaters. Enzyme Microb Technol 33:802–809

    CAS  Google Scholar 

  98. Azabou S, Najjar W, Gargoubi A, Ghorbel A, Sayadi S (2007) Catalytic wet peroxide photo-oxidation of phenolic olive oil mill wastewater contaminants: part II. Degradation and detoxification of low-molecular mass phenolic compounds in model and real effluent. Appl Catal B Environ 77:166–174

    CAS  Google Scholar 

  99. Justino C, Marques A, Duarte K, Duarte A, Pereira R, Rocha-Santos T, Freitas A (2010) Degradation of phenols in olive oil mill wastewater by biological, enzymatic, and photo-Fenton oxidation. Environ Sci Pollut Res 17:650–656

    CAS  Google Scholar 

  100. Iamarino G, Rao MA, Gianfreda L (2009) Dephenolization and detoxification of olive-mill wastewater (OMW) by purified biotic and abiotic oxidative catalysts. Chemosphere 74:216–223

    CAS  Google Scholar 

  101. Chedeville O, Debacq M, Porte C (2009) Removal of phenolic compounds present in olive mill wastewaters by ozonation. Desalination 249:865–869

    CAS  Google Scholar 

  102. Hanafi F, Assobhei O, Mountadar M (2010) Detoxification and discoloration of Moroccan olive mill wastewater by electrocoagulation. J Hazard Mater 174:807–812

    CAS  Google Scholar 

  103. Abdelwahab O, Amin NK, El-Ashtoukhy ES (2009) Electrochemical removal of phenol from oil refinery wastewater. J Hazard Mater 163:711–716

    CAS  Google Scholar 

  104. Adhoum N, Monser L (2004) Decolourization and removal of phenolic compounds from olive mill wastewater by electrocoagulation. Chem Eng Process 43:1281–1287

    CAS  Google Scholar 

  105. Ehaliotis C, Papadopoulou K, Kotsou M, Mari I, Balis C (1999) Adaptation and population dynamics of Azotobacter vinelandii during aerobic biological treatment of olive-mill wastewater. FEMS Microbiol Ecol 30:301–311

    CAS  Google Scholar 

  106. Ben Sassi A, Boularbah A, Jaouad A, Walker G, Boussaid A (2006) A comparison of Olive oil Mill Wastewaters (OMW) from three different processes in Morocco. Process Biochem 41:74–78

    CAS  Google Scholar 

  107. Garcıa Garcıa I, Jimenez Pena P, Bonilla Venceslada J, Martın Martın A, Martın Santos M, Ramos Gomez E (2000) Removal of phenol compounds from olive mill wastewater using Phanerochaete chrysosporium, Aspergillus niger, Aspergillus terreus and Geotrichum candidum. Process Biochem 35:751–758

    Google Scholar 

  108. Dalis D, Anagnostidis K, Lopez A, Letsiou I, Hartmann L (1996) Anaerobic digestion of total raw olive-oil wastewater in a two-stage pilot-plant (up-flow and fixed-bed bioreactors). Bioresour Technol 57:237–243

    CAS  Google Scholar 

  109. Fezzani B, Ben Cheikh R (2010) Two-phase anaerobic co-digestion of olive mill wastes in semi-continuous digesters at mesophilic temperature. Bioresour Technol 101:1628–1634

    CAS  Google Scholar 

  110. Martinez-Garcia G, Johnson AC, Bachmann RT, Williams CJ, Burgoyne A, Edyvean RGJ (2007) Two-stage biological treatment of olive mill wastewater with whey as co-substrate. Int Biodeterior Biodegrad 59:273–282

    CAS  Google Scholar 

  111. Aouidi F, Gannoun H, Ben Othman N, Ayed L, Hamdi M (2009) Improvement of fermentative decolorization of olive mill wastewater by Lactobacillus paracasei by cheese whey’s addition. Process Biochem 44:597–601

    CAS  Google Scholar 

  112. Martirani L, Giardina P, Marzullo L, Sannia G (1996) Reduction of phenol content and toxicity in olive oil mill waste waters with the ligninolytic fungus Pleurotus ostreatus. Water Res 30:1914–1918

    CAS  Google Scholar 

  113. D’Annibale A, Rita Stazi S, Vinciguerra V, Di Mattia E, Giovannozzi Sermanni G (1999) Characterization of immobilized laccase from Lentinula edodes and its use in olive-mill wastewater treatment. Process Biochem 34:697–706

    Google Scholar 

  114. D’Annibale A, Ricci M, Quaratino D, Federici F, Fenice M (2004) Panus tigrinus efficiently removes phenols, color and organic load from olive-mill wastewater. Res Microbiol 155:596–603

    Google Scholar 

  115. Tsioulpas A, Dimou D, Iconomou D, Aggelis G (2002) Phenolic removal in olive oil mill wastewater by strains of Pleurotus spp. in respect to their phenol oxidase (laccase) activity. Bioresour Technol 84:251–257

    CAS  Google Scholar 

  116. Greco G Jr, Toscanoa G, Cioffi M, Gianfreda L, Sannino F (1999) Dephenolisation of olive mill waste-waters by olive husk. Water Res 33:3046–3050

    CAS  Google Scholar 

  117. Azabou S, Najjar W, Bouaziz M, Ghorbel A, Sayadi S (2010) A compact process for the treatment of olive mill wastewater by combining wet hydrogen peroxide catalytic oxidation and biological techniques. J Hazard Mater 183:62–69

    CAS  Google Scholar 

  118. Benitez FJ, Beltran-Heredia J, Torregrosa J, Acero JL (1999) Treatment of olive mill wastewaters by ozonation, aerobic degradation and the combination of both treatments. J Chem Technol Biotechnol 74:639–646

    CAS  Google Scholar 

  119. Benitez FJ, Beltran-Heredia J, Torregrosa J, Acero JL (1997) Treatments of wastewaters from olive oil mills by UV radiation and by combined ozone-UV radiation. Toxicol Environ Chem 61:173–185

    Google Scholar 

  120. Baransi K, Dubowski Y, Sabbah I (2011) Synergetic effect between photocatalytic degradation and adsorption processes on the removal of phenolic compounds from olive mill wastewater. Water Res 46:789–798

    Google Scholar 

  121. Davies LC, Novais JM, Martins-Dias S (2004) Influence of salts and phenolic compounds on olive mill wastewater detoxification using superabsorbent polymers. Bioresour Technol 95:259–268

    CAS  Google Scholar 

  122. Niaounakis M, Halvadakis CP (2004) olive processing waste management: literature review and patent survey. Typothito, Athens, pp 3–12

  123. El Hajjouji H, Merlina G, Pinelli E, Winterton P, Revel JC, Hafidi M (2008) 13C NMR study of the effect of aerobic treatment of olive mill wastewater (OMW) on its lipid-free content. J Hazard Mater 154:927–932

    Google Scholar 

  124. Azbar N, Bayram A, Filibeli A, Muezzinoglu A, Sengul F, Ozer A (2004) A review of waste management options in olive oil production. Crit Rev Food Sci Nutr 34:209–247

    CAS  Google Scholar 

  125. Bradley RM, Baruchello L (1980) Primary wastes in the olive oil industry. Effl Water Treat J 20:176–177

    CAS  Google Scholar 

  126. Borsani R, Ferrando B (1996) Ultrafiltration plant for olive vegetation waters by polymeric membrane batteries. Desalination 108:281–286

    Google Scholar 

  127. Paredes C, Cegarra J, Roig A, Sanchez-Monedero M, Bernal M (1999) Characterization of olive mill wastewater (alpechin) and its sludge for agricultural purposes. Bioresour Technol 67:111–115

    CAS  Google Scholar 

  128. Galiatsatou P, Metaxas M, Arapoglou D, Kasselouri-Rigopoulou V (2002) Treatment of olive mill waste water with activated carbons from agricultural by-products. Waste Manage (Oxford) 22:803–812

    CAS  Google Scholar 

  129. Sierra J, Martı E, Montserrat G, Cruanas R, Garau M (2001) Characterisation and evolution of a soil affected by olive oil mill wastewater disposal. Sci Total Environ 279:207–214

    CAS  Google Scholar 

  130. Aktas ES, Imre S, Ersoy L (2001) Characterization and lime treatment of olive mill wastewater. Water Res 35:2336–2340

    CAS  Google Scholar 

  131. Eroğlu E, Gündüz U, Yücel M, Türker L, In Eroğlu (2004) Photobiological hydrogen production by using olive mill wastewater as a sole substrate source. Int J Hydrogen Energy 29:163–171

    Google Scholar 

  132. Caputto AC, Scacchia F, Pelagagge PM (2003) Disposal of by-products in olive oil industry: waste-to-energy solutions. Appl Therm Eng 23:197–214

    Google Scholar 

  133. Georgacakis D, Dalis D (1993) Controlled anaerobic digestion of settled olive-oil wastewater. Bioresour Technol 46:221–226

    CAS  Google Scholar 

  134. Velioĝlou SG, Curi K, Camillar SR (1987) Laboratory experiments on the physical treatment of olive oil wastewater. Int J Dev Technol 5:49–57

    Google Scholar 

  135. Canepa P, Marignetti N, Rognoni USC (1988) Olive mills wastewater treatment by combined membrane processes. Water Res 22:1491–1494

    CAS  Google Scholar 

  136. Paraskeva CA, Papadakis VG, Tsarouchi E, Kanellopoulou DG, Koutsoukos PG (2007) Membrane processing for olive mill wastewater fractionation. Desalination 213:218–229

    CAS  Google Scholar 

  137. Russo C (2007) A new membrane process for the selective fractionation and total recovery of polyphenols, water and organic substances from vegetation waters (VW). J Membr Sci 288:239–246

    CAS  Google Scholar 

  138. Stoller M, Chianese A (2006) Technical optimization of a batch olive wash wastewater treatment membrane plant. Desalination 200:734–736

    CAS  Google Scholar 

  139. Turano E, Curcio S, De Paola MG, Calabrò V, Iorio G (2002) An integrated centrifugation–ultrafiltration system in the treatment of olive mill wastewater. J Membr Sci 209:519–531

    CAS  Google Scholar 

  140. De Martino A, Arienzo M, Iorio M, Vinale F, Lorito M, Prenzler PD, Ryan D, Obied HK (2011) Detoxification of olive mill wastewaters by zinc–aluminium layered double hydroxides. Appl Clay Sci 53:737–744

    Google Scholar 

  141. Akdemir EO, Ozer A (2009) Investigation of two ultrafiltration membranes for treatment of olive oil mill wastewater. Desalination 249:660–666

    CAS  Google Scholar 

  142. Ena A, Pintucci C, Carlozzi P (2012) The recovery of polyphenols from olive mill waste using two adsorbing vegetable matrices. J Biotechnol 157:573–577

    CAS  Google Scholar 

  143. Rozzi A, Malpei F (1996) Treatment and disposal of olive mill effluents. Int Biodeterior Biodegrad 38:135–144

    Google Scholar 

  144. Tsagaraki E, Lazarides HN, Petrotos KB (2007) Utilization of by-products and treatment of waste in the food industry. In: Olive mill wastewater treatment. Springer, Berlin, pp 133–157

  145. Inan H, Dimoglo A, Şimşek H, Karpuzcu M (2004) Olive oil mill wastewater treatment by means of electro-coagulation. Sep Purif Technol 36:23–31

    CAS  Google Scholar 

  146. Lolos G, Skordilis A, Parissakis G (1994) Polluting characteristics and lime precipitation of olive mill wastewater. J Environ Sci Health Part A Environ Sci Eng Toxic Hazard Subst Control 29:1349–1356

    Google Scholar 

  147. Sarika R, Kalogerakis N, Mantzavinos D (2005) Treatment of olive mill effluents: part II. Complete removal of solids by direct flocculation with poly-electrolytes. Environ Int 31:297–304

    CAS  Google Scholar 

  148. Chatzisymeon E, Diamadopoulos E, Mantzavinos D (2009) Effect of key operating parameters on the non-catalytic wet oxidation of olive mill wastewaters. Water Sci Technol 59:2509–2518

    CAS  Google Scholar 

  149. Chatzisymeon E, Xekoukoulotakis NP, Mantzavinos D (2009) Determination of key operating conditions for the photocatalytic treatment of olive mill wastewaters. Catal Today 144:143–148

    CAS  Google Scholar 

  150. Gernjak W, Krutzler T, Glaser A, Malato S, Caceres J, Bauer R, Fernández-Alba A (2003) Photo-Fenton treatment of water containing natural phenolic pollutants. Chemosphere 50:71–78

    CAS  Google Scholar 

  151. Mantzavinos D, Hellenbrand R, Livingston AG, Metcalfe IS (1996) Catalytic wet oxidation of p-coumaric acid: partial oxidation intermediates, reaction pathways and catalyst leaching. Appl Catal B Environ 7:379–396

    CAS  Google Scholar 

  152. Mantzavinos D, Lauer E, Hellenbrand R, Livingston AG, Metcalfe IS (1997) Wet oxidation as a pretreatment method for wastewaters contaminated by bioresistant organics. Water Sci Technol 36:109–116

    CAS  Google Scholar 

  153. Ammary BY (2005) Treatment of olive mill wastewater using anaerobic sequencing batch reactor. Desalination 177:157–165

    CAS  Google Scholar 

  154. Azbar N, Tutuk F, Keskin T (2009) Effect of organic loading rate on the performance of an up-flow anaerobic sludge blanket reactor treating olive mill effluent. Biotechnol Bioprocess Eng 14:99–104

    CAS  Google Scholar 

  155. Azbar N, Tutuk F, Keskin T (2009) Biodegradation performance of an anaerobic hybrid reactor treating olive mill effluent under various organic loading rates. Int Biodeterior Biodegrad 63:690–698

    CAS  Google Scholar 

  156. Sabbah I, Yazbak A, Haj J, Saliba A, Basheer S (2005) Biomass selection for optimal anaerobic treatment of olive mill wastewater. Environ Technol 26:47–54

    CAS  Google Scholar 

  157. Benitez FJ, Beltrán-Heredia J, Torregrosa J, Acero JL, Cervcas V (1997) Aerobic degradation of olive mill wastewaters. Appl Microbiol Biotechnol 47:185–188

    CAS  Google Scholar 

  158. El Hajjouji H, Fakharedine N, Ait Baddi G, Winterton P, Bailly J, Revel J, Hafidi M (2007) Treatment of olive mill waste-water by aerobic biodegradation: an analytical study using gel permeation chromatography, ultraviolet–visible and Fourier transform infrared spectroscopy. Bioresour Technol 98:3513–3520

    Google Scholar 

  159. Velioĝlou SG, Curi K, Camillar SR (1992) Activated sludge treatability of olive oil-bearing wastewater. Water Res 26:1410–1415

    Google Scholar 

  160. Azbar N, Keskin T, Yuruyen A (2008) Enhancement of biogas production from olive mill effluent (OME) by co-digestion. Biomass Bioenergy 32:1195–1201

    CAS  Google Scholar 

  161. Marques I, Teixeira A, Rodrigues L, Dias SM, Novais J (1998) Anaerobic treatment of olive mill wastewater with digested piggery effluent. Water Environ Res 70:1056–1061

    CAS  Google Scholar 

  162. Marques IP (2001) Anaerobic digestion treatment of olive mill wastewater for effluent re-use in irrigation. Desalination 137:233–239

    CAS  Google Scholar 

  163. Beccari M, Bertin L, Dionisi D, Fava F, Lampis S, Majone M, Valentino F, Vallini G, Villano M (2009) Exploiting olive oil mill effluents as a renewable resource for production of biodegradable polymers through a combined anaerobic–aerobic process. J Chem Technol Biotechnol 84:901–908

    CAS  Google Scholar 

  164. Bressan M, Liberatore L, D’Alessandro N, Tonucci L, Belli C, Ranalli G (2004) Improved combined chemical and biological treatments of olive oil mill wastewaters. J Agric Food Chem 52:1233–1288

    Google Scholar 

  165. Ramos-Cormenzana A, Monteoliva-Sanchez M, Lopez M (1995) Bioremediation of alpechin. Int Biodeterior Biodegrad 35:249–268

    CAS  Google Scholar 

  166. Chatjipavlidis I, Antonakou M, Demou D, Flouri F, Balis C (1996) Bio-fertilization of olive oil mills liquid wastes. The pilot plant in Messinia, Greece. Int Biodeterior Biodegrad 38:183

    Google Scholar 

  167. Paredes C, Bernal M, Roig A, Cegarra J (2001) Effects of olive mill wastewater addition in composting of agroindustrial and urban wastes. Biodegradation 12:225–234

    CAS  Google Scholar 

  168. Sánchez-Arias V, Fernández FJ, Villaseñor J, Rodríguez L (2008) Enhancing the co-composting of olive mill wastes and sewage sludge by the addition of an industrial waste. Bioresour Technol 99:6346–6353

    Google Scholar 

  169. Tomati U, Galli E, Fiorelli F, Pasetti L (1996) Fertilizers from composting of olive-mill wastewaters. Int Biodeterior Biodegrad 38:155–162

    Google Scholar 

  170. Gonzalez-Lopez J, Pozo C, Martinez-Toledo M, Rodelas B, Salmeron V (1996) Production of polyhydroxyalkanoates by Azotobacter chlorococcum H23 in wastewater from olive oil mills (alpechin). Int Biodeterior Biodegrad 38:271–276

    CAS  Google Scholar 

  171. Lopez M, Moreno J, Ramos-Cormenzana A (2001) Xanthomonas campestris strain selection for xanthan production from olive mill wastewaters. Water Res 35:1828–1830

    CAS  Google Scholar 

  172. Lopez M, Ramos-Cormenzana A (1996) Xanthan production from olive-mill wastewaters. Int Biodeterior Biodegrad 38:263–270

    CAS  Google Scholar 

  173. Mercade M, Manresa M (1994) The use of agroindustrial by-products for biosurfactant production. J Am Oil Chemists Soc 71:61–64

    CAS  Google Scholar 

  174. Mercade M, Manresa M, Robert M, Espuny M, De Andres C, Guinea J (1993) Olive oil mill effluent (OOME). New substrate for biosurfactant production. Bioresour Technol 43:1–6

    CAS  Google Scholar 

  175. Dareioti MA, Dokianakis SN, Stamatelatou K, Zafiri C, Kornaros M (2009) Biogas production from anaerobic co-digestion of agroindustrial wastewaters under mesophilic conditions in a two-stage process. Desalination 248:891–906

    CAS  Google Scholar 

  176. Ros Fiestas, de Ursinos J, Borja-Padilla R (1996) Biomethanization. Int Biodeterior Biodegrad 38:145–153

    Google Scholar 

  177. Gelegenis J, Georgakakis D, Angelidaki I, Christopoulou N, Goumenaki M (2007) Optimization of biogas production from olive-oil mill wastewater, by codigesting with diluted poultry-manure. Appl Energy 84:646–663

    CAS  Google Scholar 

  178. Haagensen F, Skiadas IV, Gavala HN, Ahring BK (2009) Pre-treatment and ethanol fermentation potential of olive pulp at different dry matter concentrations. Biomass Bioenergy 33:1643–1651

    CAS  Google Scholar 

  179. Massadeh MI, Modallal N (2008) Ethanol Production from olive mill wastewater (OMW) pretreated with Pleurotus sajor-caju†. Energy Fuels 22:150–154

    CAS  Google Scholar 

  180. Alcaide ME, Nefzaoui A (1996) Recycling of olive-oil by-products: possibilities of utilization in animal nutrition. Int Biodeterior Biodegrad 38(3):235–277

    Google Scholar 

  181. Cardoso SM, Coimbra MA, Lopez da Silva JA (2003) Temperature dependence of the formation and melting of pectin-Ca2+ networks: a rheological study. Food Hydrocolloids 17:801–807

    CAS  Google Scholar 

  182. Cardoso SM, Coimbra MA, Lopez da Silva JA (2003) Calcium-mediated gelation of an olive pomace pectic polysaccharide Arabinan side chains. Carbohydr Polym 52:125–133

    CAS  Google Scholar 

  183. Al-Malah K, Azzam M, Abu-Lail NI (2000) Olive mills effluent (OME) wastewater post-treatment using activated clay. Sep Purif Technol 20:225–234

    CAS  Google Scholar 

  184. De Leonardis A, Macciola V, Nag A (2009) Antioxidant activity of various phenol extracts of olive-oil mill wastewaters. Acta Alimentaria 38:77–86

    Google Scholar 

  185. Reis MTA, de Freitas OM, Ferreira LM, Carvalho JM (2006) Extraction of 2-(4-hydroxyphenyl) ethanol from aqueous solution by emulsion liquid membranes. J Membr Sci 269:161–170

    CAS  Google Scholar 

  186. El-Abbassi A, Kiai H, Hafidi A, García-Payo M, Khayet M (2012) Treatment of olive mill wastewater by membrane distillation using polytetrafluoroethylene membranes. Sep Purif Technol 98:55–61

    Google Scholar 

  187. Reis MTA, Freitas OMF, Agarwal S, Ferreira LM, Ismael MRC, Machado R, Carvalho JMR (2011) Removal of phenols from aqueous solutions by emulsion liquid membranes. J Hazard Mater 192:986–994

    CAS  Google Scholar 

  188. El-Abbassi A, Khayet M, Hafidi A (2011) Micellar enhanced ultrafiltration process for the treatment of olive mill wastewater. Water Res 45:4522–4530

    CAS  Google Scholar 

  189. Garcia-Castello E, Cassano A, Criscuoli A, Conidi C, Drioli E (2010) Recovery and concentration of polyphenols from olive mill wastewaters by integrated membrane system. Water Res 44:3883–3892

    CAS  Google Scholar 

  190. Bertin L, Ferri F, Scoma A, Marchetti L, Fava F (2011) Recovery of high added value natural polyphenols from actual olive mill wastewater through solid phase extraction. Chem Eng J 171:1287–1293

    CAS  Google Scholar 

  191. Ferri F, Bertin L, Scoma A, Marchetti L, Fava F (2011) Recovery of low molecular weight phenols through solid-phase extraction. Chem Eng J 166:994–1001

    CAS  Google Scholar 

  192. Ceccon L, Saccu D, Procida G, Cardinali S (2001) Liquid chromatographic determination of simple phenolic compounds in waste waters from olive oil production plants. J AOAC Int 84:1739–1744

    CAS  Google Scholar 

  193. Allouche N, Fki I, Sayadi S (2003) Toward a high yield recovery of antioxidants and purified hydroxytyrosol from olive mill wastewaters. J Agric Food Chem 52:267–273

    Google Scholar 

  194. Nieto LM, Hodaifa G, Rodríguez S, Giménez JA, Ochando J (2011) Degradation of organic matter in olive-oil mill wastewater through homogeneous Fenton-like reaction. Chem Eng J 173:503–510

    CAS  Google Scholar 

  195. Karageorgos P, Coz A, Charalabaki M, Kalogerakis N, Xekoukoulotakis NP, Mantzavinos D (2006) Ozonation of weathered olive mill wastewaters. J Chem Technol Biotechnol 81:1570–1576

    CAS  Google Scholar 

  196. Jarboui R, Magdich S, Ayadi RJ, Gargouri A, Gharsallah N, Ammar E (2012) Aspergillus niger P6 and Rhodotorula mucilaginosa CH4 used for olive mill wastewater (OMW) biological treatment in single pure and successive cultures. Environ Technol, pp 1–8

  197. Cerrone F, Barghini P, Pesciaroli C, Fenice M (2011) Efficient removal of pollutants from olive washing wastewater in bubble-column bioreactor by Trametes versicolor. Chemosphere 84:254–259

    CAS  Google Scholar 

  198. Duarte K, Freitas A, Pereira R, Pinheiro J, Gonçalves F, Azaari H, El Azzouzi M, Zrineh A, Zaydoun S, Duarte A, Rocha-Santos T (2012) Treatment of olive oil mill wastewater by silica–Alginate–Fungi biocomposites. Water Air Soil Pollut 223:4307–4318

    CAS  Google Scholar 

  199. Agalias A, Magiatis P, Skaltsounis AL, Mikros E, Tsarbopoulos A, Gikas E, Spanos I, Manios T (2007) A new process for the management of olive oil mill waste water and recovery of natural antioxidants. J Agric Food Chem 55:2671–2676

    CAS  Google Scholar 

  200. Khoufi S, Aloui F, Sayadi S (2006) Treatment of olive oil mill wastewater by combined process electro-Fenton reaction and anaerobic digestion. Water Res 40:2007–2016

    CAS  Google Scholar 

  201. Sayadi S, Allouche N, Jaoua M, Aloui F (2000) Detrimental effects of high molecular-mass polyphenols on olive mill wastewater biotreatment. Process Biochem 35:725–735

    CAS  Google Scholar 

  202. Beltran de Heredia J, Garcia J (2005) Process integration: continuous anaerobic digestion–ozonation treatment of olive mill wastewater. Ind Eng Chem Res 44:8750–8755

    CAS  Google Scholar 

  203. Benitez F, Beltran-Heredia J, Torregrosa J, Acero J (1997) Improvement of the anaerobic biodegradation of olive mill wastewaters by prior ozonation pretreatment. Bioprocess Biosyst Eng 17:169–175

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seid Mahdi Jafari.

Additional information

S. M. Jafari has equally contributed as first author in this paper.

About this article

Cite this article

Rahmanian, N., Jafari, S.M. & Galanakis, C.M. Recovery and Removal of Phenolic Compounds from Olive Mill Wastewater. J Am Oil Chem Soc 91, 1–18 (2014). https://doi.org/10.1007/s11746-013-2350-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11746-013-2350-9

Keywords

Navigation