Skip to main content
Log in

Extraction of Algal Lipids and Their Analysis by HPLC and Mass Spectrometry

  • Original Paper
  • Published:
Journal of the American Oil Chemists' Society

Abstract

Algae are a promising source of biofuel but claims about their lipid content can be ambiguous because extraction methods vary and lipid quantitation often does not distinguish between particular lipid classes. Here we compared methods for the extraction of algal lipids and showed that 2-ethoxyethanol (2-EE) provides superior lipid recovery (>150–200 %) compared to other common extraction solvents such as chloroform:methanol or hexane. Extractions of wet and dry algal biomass showed that 2-EE was more effective at extracting lipids from wet rather than dried algal pellets. To analyze lipid content we used normal-phase HPLC with parallel quantitation by an evaporative light scattering detector and a mass spectrometer. Analysis of crude lipid extracts showed that all major lipid classes could be identified and quantified and revealed a surprisingly large amount of saturated hydrocarbons (HC). This HC fraction was isolated from extracts of bioreactor-grown algae and further analyzed by HPLC/MS, NMR, and GC/MS. The results showed that the sample consisted of a mixture of saturated, straight- and branched-chain HC of different chain lengths. These algal HC could represent an alternative biofuel to triacylglycerols (TAG) that could feed directly into the current petroleum infrastructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

APCI:

Atmospheric pressure chemical ionization

BC:

β-Carotene

CE:

Cholesteryl ester

CHL:

Chlorophylls & chlorophyll catabolites

DAG:

Diacylglycerol

DGDG:

Digalactosyldiacylglycerol

DMF:

Dimethylformamide

ELSD:

Evaporative light scattering detector

FAME:

Fatty acid methyl ester

FFA:

Free fatty acid

GL:

Glycolipid

HC:

Hydrocarbon

MAG:

Monoacylglycerol

PE:

Phosphatidylethanolamine

PC:

Phosphatidylcholine

PHY:

Phytol

PL:

Phospholipid

TAG:

Triacylglycerol

2-EE:

2-Ethoxyethanol

References

  1. Rittmann BE (2008) Opportunities for renewable bioenergy using microorganisms. Biotechnol Bioeng 100:203–212

    Article  CAS  Google Scholar 

  2. Chisti Y (2008) Biodiesel from microalgae beats bioethanol. Trends Biotechnol 26:126–131

    Article  CAS  Google Scholar 

  3. Cooksey KE, Guckert JB, Williams S, Callis PR (1987) Fluorometric determination of the neutral lipid content of microalgal cells using Nile red. J Microbiol Meth 6:333–345

    Article  CAS  Google Scholar 

  4. Wu H, Volponi JV, Oliver AE, Parikh AN, Simmons BA, Singh S (2011) In vivo lipidomics using single-cell Raman spectroscopy. Proc Natl Acad Sci USA 108:3809–3814

    Article  CAS  Google Scholar 

  5. Pick U, Rachutin-Zalogin T (2012) Kinetic anomalies in the interactions of Nile red with microalgae. J Microbiol Meth 88:189–196

    Google Scholar 

  6. Zhang T, Chi Z, Zhao CH, Chi ZM, Gong F (2010) Bioethanol production from hydrolysates of inulin and the tuber meal of Jerusalem artichoke by Saccharomyces sp. W0. Bioresource Technol 101:8166–8170

    Article  CAS  Google Scholar 

  7. Nordback J, Lundberg E, Christie WW (1998) Separation of lipid classes from marine particulate material by HPLC on a polyvinyl alcohol-bonded stationary phase using dual-channel evaporative light scattering detection. Mar Chem 60:165–175

    Article  CAS  Google Scholar 

  8. Graeve M, Janssen D (2009) Improved separation and quantification of neutral and polar lipid classes by HPLC–ELSD using a monolithic silica phase: application to exceptional marine lipids. J Chromatogr B 877:1815–1819

    Article  CAS  Google Scholar 

  9. MacDougall KM, McNichol J, McGinn PJ, O’Leary SJ, Melanson JE (2011) Triacylglycerol profiling of microalgae strains for biofuel feedstock by liquid chromatography-high-resolution mass spectrometry. Anal Bioanal Chem 401:2609–2616

    Article  CAS  Google Scholar 

  10. Folch J, Lees M, Stanley GHS (1956) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226 :497–509

    Google Scholar 

  11. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  CAS  Google Scholar 

  12. Iverson S, Lang S, Cooper M (2001) Comparison of the Bligh and Dyer and Folch methods for total lipid determination in a broad range of marine tissue. Lipids 36:1283–1287

    Article  CAS  Google Scholar 

  13. Jeffrey JW, LeRoi JM (1997) Simple procedures for growing SCOR reference microalgal cultures. In: Jeffrey SW, Mantoura RFC, Wright SW (eds) Phytoplankton pigments in oceanography. UNESCO, France, pp 181–205

    Google Scholar 

  14. Baumler ER, Crapiste GH, Carelli AA (2010) Solvent extraction: kinetic study of major and minor compounds. J Am Oil Chem Soc 87:1489–1495

    Article  Google Scholar 

  15. Kinsey WH, Decker GL, Lennarz WJ (1980) Isolation and partial characterization of the plasma membrane of the sea urchin egg. J Cell Biol 87:248–254

    Article  CAS  Google Scholar 

  16. Tornabene GT, Langworthy TA (1979) Diphytanyl and dibiphytanyl glycerol ether lipids of methanogenic archaebacteria. Science 203:51–53

    Article  CAS  Google Scholar 

  17. Lucena R, Cardenas S, Valcarcel M (2007) Evaporative light scattering detection: trends in its analytical uses. Anal Bioanal Chem 388:1663–1672

    Article  CAS  Google Scholar 

  18. Kumari P, Reddy CRK, Jha B (2011) Comparative evaluation and selection of a method for lipid and fatty acid extraction from macroalgae. Anal Biochem 415:134–144

    Article  CAS  Google Scholar 

  19. Wang G, Wang T (2012) Characterization of lipid components in two microalgae for biofuel application. J Am Oil Chem Soc 89:135–143

    Google Scholar 

  20. Giebel BM, Swart PK, Riemer DD (2011) New insights to the use of ethanol in automotive fuels: a stable isotopic tracer for fossil- and bio-fuel combustion inputs to the atmosphere. Environ Sci Technol 45:6661–6669

    Article  CAS  Google Scholar 

  21. Mulbry W, Kondrad S, Buyer J, Luthria DL (2009) Optimization of an oil extraction process for algae from the treatment of manure effluent. J Am Oil Chem Soc 86:909–915

    Article  CAS  Google Scholar 

  22. Vijayaraghavan K, Hemanathan K (2009) Biodiesel production from freshwater algae. Energy Fuels 23:5448–5453

    Article  CAS  Google Scholar 

  23. Sahilleri T, Alglerinde D, Hidrokarbonları UP (2003) The volatile petroleum hydrocarbons in marine algae around Turkish coasts. Acta Pharm Sci 50:167–182

    Google Scholar 

  24. Greenwell HC, Laurens LML, Shields RJ, Lovitt RW, Flynn KJ (2009) Placing microalgae on the biofuels priority list: a review of the technological challenges. J R Soc Interface 7:703–726

    Article  Google Scholar 

  25. Gelpi E, Oro J (1967) Chemical ionization mass spectrometry of pristane. Anal Chem 39:388–389

    Article  CAS  Google Scholar 

  26. Metzger P, Largeau C (2005) Botryococcus braunii: a rich source for hydrocarbons and related ether lipids. Appl Microbiol Biotechnol 66:486–496

    Article  CAS  Google Scholar 

  27. Paoletti C, Pushparaj B, Florenzano G, Capella P, Lercker G (1976) Unsaponifiable matter of green and blue-green algal lipids as a factor of biochemical differentiation of their biomasses: I. Total unsaponifiable and hydrocarbon fraction. Lipids 11:258–265

    Article  CAS  Google Scholar 

  28. Blokker P, Schouten S, van der Ende H, de Leeuw JW, Hatcher PG, Damaste JSS (1998) Chemical structure of algaenans from the fresh water algae Tetraedron minimum, Scenedesmus communis and Pediastrum boryanum. Org Geochem 29:1453–1468

    Article  CAS  Google Scholar 

  29. Robertson GP, Hamilton SK, Del Grosso SJ, Parton WJ (2011) The biogeochemistry of bioenergy landscapes: carbon, nitrogen, and water considerations. Ecol Appl 21:1055–1067

    Article  Google Scholar 

  30. Tornabene TG, Holzer G, Lien S, Burris N (1983) Lipid composition of the nitrogen starved green alga Neochloris oleoabundans. Enzyme Microb Tech 5:435–440

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded in part by OpenAlgae.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Poenie.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 625 kb)

About this article

Cite this article

Jones, J., Manning, S., Montoya, M. et al. Extraction of Algal Lipids and Their Analysis by HPLC and Mass Spectrometry. J Am Oil Chem Soc 89, 1371–1381 (2012). https://doi.org/10.1007/s11746-012-2044-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11746-012-2044-8

Keywords

Navigation