Skip to main content
Log in

An Improved Method for Synthesis of N-stearoyl and N-palmitoylethanolamine

  • Original Paper
  • Published:
Journal of the American Oil Chemists' Society

Abstract

Certain N-acylethanolamines interact with cannabinoid receptors and have anorexic and neuroprotective effects. Traditional methods for the synthesis of N-acylethanolamines use fatty acid chlorides, fatty acid methyl esters, free fatty acids and triacylglycerols as acyl donors to react with ethanolamine. In the present study, we investigated the feasibility of using fatty acid vinyl esters as the acyl donor to synthesize N-stearoyl and N-palmitoylethanolamine. Theoretically, the use of fatty acid vinyl esters should lead to an irreversible reaction because the volatile acetaldehyde by-product is easily removed. Four reaction conditions, i.e. catalyst concentration, substrate ratio, temperature, and time were evaluated. The reaction performed at mild temperatures and with an excess amount of ethanolamine which acted as both reactant and solvent resulted in the formation of high purity N-stearoyl and N-palmitoylethanolamine. When 20 mmol ethanolamine was reacted with 1 mmol vinyl stearate at 80 °C for 1 h with 1% sodium methoxide as catalyst, N-stearoylethanolamine with 96% purity was obtained after the removal of excess ethanolamine without further purification, while N-palmitoylethanolamine with 98% purity was obtained by reacting with the same substrate ratio at 60 °C for 1.5 h with 3% catalyst. Complete conversion of vinyl stearate and palmitate was achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Liu KJ, Nag A, Shaw JF (2001) Lipase-catalyzed synthesis of fatty acid diethanolamides. J Agric Food Chem 49:5761–5764

    Article  CAS  Google Scholar 

  2. Sanders HL (1958) Fatty acid alkylolamides. J Am Oil Chem Soc 35:548–551

    Article  Google Scholar 

  3. Feairheller S, Bistline R, Bilyk A, Dudley R, Kozempel M, Haas M (1994) A novel technique for the preparation of secondary fatty amides. J Am Oil Chem Soc 71:863–866

    Article  CAS  Google Scholar 

  4. Kilaru A, Blancaflor EB, Venables BJ, Tripathy S, Mysore KS, Chapman KD (2007) The N-acylethanolamine-mediated regulatory pathway in plants. Chem Biodivers 4:1933–1955

    Article  CAS  Google Scholar 

  5. Re G, Barbero R, Miolo A, Di Marzo V (2007) Palmitoylethanolamide, endocannabinoids and related cannabimimetic compounds in protection against tissue inflammation and pain: potential use in companion animals. Vet J 173:21–30

    Article  CAS  Google Scholar 

  6. Terrazzino S, Berto F, Carbonare MD, Fabris M, Guiotto A, Bernardini D, Leon A (2004) Stearoylethanolamide exerts anorexic effects in mice via down-regulation of liver stearoyl-coenzyme A desaturase-1 mRNA expression. FASEB J 18:1580

    CAS  Google Scholar 

  7. Calignano A, La Rana G, Giuffrida A, Piomelli D (1998) Control of pain initiation by endogenous cannabinoids. Nature 394:277–281

    Article  CAS  Google Scholar 

  8. Aloe L, Leon A, Levi-Montalcini R (1993) A proposed autacoid mechanism controlling mastocyte behaviour. Inflamm Res 39:145–147

    Google Scholar 

  9. Lambert DM, Vandevoorde S, Diependaele G, Govaerts SJ, Robert AR (2001) Anticonvulsant activity of N-palmitoylethanolamide, a putative endocannabinoid, in mice. Epilepsia 42:321–327

    Article  CAS  Google Scholar 

  10. Ross RA, Brockie HC, Pertwee RG (2000) Inhibition of nitric oxide production in RAW264. 7 macrophages by cannabinoids and palmitoylethanolamide. Eur J Pharmacol 401:121–130

    Article  CAS  Google Scholar 

  11. Costa B, Conti S, Giagnoni G, Colleoni M (2002) Therapeutic effect of the endogenous fatty acid amide, palmitoylethanolamide, in rat acute inflammation: inhibition of nitric oxide and cyclo-oxygenase systems. Br J Pharmacol 137:413–420

    Article  CAS  Google Scholar 

  12. Thabuis C, Tissot-Favre D, Bezelgues JB, Martin JC, Cruz-Hernandez C, Dionisi F, Destaillats F (2008) Biological functions and metabolism of oleoylethanolamide. Lipids 43:887–894

    Article  CAS  Google Scholar 

  13. Astarita G, Di Giacomo B, Gaetani S, Oveisi F, Compton TR, Rivara S, Tarzia G, Mor M, Piomelli D (2006) Pharmacological characterization of hydrolysis-resistant analogs of oleoylethanolamide with potent anorexiant properties. J Pharmacol Exp Ther 318:563

    Article  CAS  Google Scholar 

  14. Okamoto Y, Wang J, Morishita J, Ueda N (2007) Biosynthetic pathways of the endocannabinoid anandamide. Chem Biodivers 4:1842–1857

    Article  CAS  Google Scholar 

  15. Ezzili C, Otrubova K, Boger DL (2010) Fatty acid amide signaling molecules. Bioorg Med Chem Lett 20:5959–5968

    Article  CAS  Google Scholar 

  16. Giuffrida A, Rodriguez de Fonseca F, Nava F, Loubet-Lescoulié P, Piomelli D (2000) Elevated circulating levels of anandamide after administration of the transport inhibitor, AM404. Eur J Pharmacol 408:161–168

    Article  CAS  Google Scholar 

  17. Koutek B, Prestwich GD, Howlett AC, Chin SA, Salehani D, Akhavan N, Deutsch DG (1994) Inhibitors of arachidonoyl ethanolamide hydrolysis. J Biol Chem 269:22937–22940

    CAS  Google Scholar 

  18. Farris R (1979) Methyl esters in the fatty acid industry. J Am Oil Chem Soc 56:770–773

    Article  Google Scholar 

  19. Maag H (1984) Fatty acid derivatives: important surfactants for household, cosmetic and industrial purposes. J Am Oil Chem Soc 61:259–267

    Article  CAS  Google Scholar 

  20. Lee C, Ooi T, Chuah C, Ahmad S (2007) Synthesis of palm oil-based diethanolamides. J Am Oil Chem Soc 84:945–952

    Article  CAS  Google Scholar 

  21. Tufvesson P, Annerling A, Hatti-Kaul R, Adlercreutz D (2007) Solvent-free enzymatic synthesis of fatty alkanolamides. Biotechnol Bioeng 97:447–453

    Article  CAS  Google Scholar 

  22. Khanmohammadi M, Kojidi MH, Garmarudi AB, Ashuri A, Soleymani M (2009) Quantitative monitoring of the amidation reaction between coconut oil and diethanolamine by attenuated total reflectance Fourier transform infrared spectrometry. J Surfactants Deterg 12:37–41

    Article  CAS  Google Scholar 

  23. Plastina P, Meijerink J, Vincken JP, Gruppen H, Witkamp R, Gabriele B (2009) Selective synthesis of unsaturated N-acylethanolamines by lipase-catalyzed N-acylation of ethanolamine with unsaturated fatty acids. Lett Org Chem 6:444–447

    Article  CAS  Google Scholar 

  24. Kolancilar H (2004) Preparation of laurel oil alkanolamide from laurel oil. J Am Oil Chem Soc 81:597–598

    Article  CAS  Google Scholar 

  25. Wood R, Raju P, Reiser R (1965) Gas-liquid chromatographic analysis of monoglycerides as their trimethylsilyl ether derivatives. J Am Oil Chem Soc 42:161–165

    Article  CAS  Google Scholar 

  26. Kanerva LT, Kosonen M, Vänttinen E, Huuhtanen T, Dahlqvist M (1992) Studies on the chemo-and enantio-selectivity of the enzymatic monoacyclations of amino alcohols. Acta Chem Scand 46:1101–1105

    Article  CAS  Google Scholar 

  27. Halldorsson A, Magnusson CD, Haraldsson GG (2003) Chemoenzymatic synthesis of structured triacylglycerols by highly regioselective acylation. Tetrahedron 59:9101–9109

    Article  CAS  Google Scholar 

  28. Halldorsson A, Magnusson CD, Haraldsson GG (2001) Chemoenzymatic synthesis of structured triacylglycerols. Tetrahedron Lett 42:7675–7677

    Article  CAS  Google Scholar 

  29. O’Connell AW (1977) Analysis of coconut oil-diethanolamine condensates by gas chromatography. Anal Chem 49:835–838

    Article  Google Scholar 

  30. Andrews PC, Fraser BH, Junk PC, Massi M, Perlmutter P, Thienthong N, Wijesundera C (2008) Large-scale synthesis of both symmetrical and unsymmetrical triacylglycerols containing docosahexaenoic acid. Tetrahedron 64:9197–9202

    Article  CAS  Google Scholar 

  31. Bilyk A, Bistline RG, Piazza GJ, Feairheller SH, Haas MJ (1992) A novel technique for the preparation of secondary fatty amides. J Am Oil Chem Soc 69:488–491

    Article  CAS  Google Scholar 

  32. Dijkstra A (2010) Lies, damn lies and response surface methodology. Eur J Lipid Sci Technol 112:1290–1293

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Drs. Linxing Yao and Jose Gerde for assistance with GC instrumentation from Department of Food Science and Human Nutrition, Iowa State University. We also acknowledge the Chinese Government for providing sponsorship for the Ph.D. graduate student, Xiaosan Wang, who conducted this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tong Wang.

About this article

Cite this article

Wang, X., Wang, T. & Wang, X. An Improved Method for Synthesis of N-stearoyl and N-palmitoylethanolamine. J Am Oil Chem Soc 89, 1305–1313 (2012). https://doi.org/10.1007/s11746-012-2017-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11746-012-2017-y

Keywords

Navigation