Skip to main content
Log in

New Nortriterpenoid and Ceramides From Stems and Leaves of Cultivated Triumfetta cordifolia A Rich (Tiliaceae)

  • Original Paper
  • Published:
Journal of the American Oil Chemists' Society

Abstract

To highlight the role of plants in traditional healing, the leaves and the stems of cultivated Triumfetta cordifolia were phytochemically studied yielding a new nor-ursane type (1), a new ceramide (2) and a new piperidinic ceramide derivative (3) named, respectively, 2α,19α-dihydroxy-3-oxo-23-nor-urs-12-en-28-oic acid, (2R)-2-hydroxy-N-[(2S,3S,4R,26E)-1,3,4-trihydroxy-26-triaconten-2-yl] tetradecanamide and (2R,8Z)-2-hydroxy-{(2S,3R,5R,6S)-3,5-dihydroxy-6-[(1E,5Z)-hexadeca-1,5-dienyl]-2-(β-d-glucopyranosyloxy)methyl piperidine-1-yl} tetracos-8-enamide (3). These were obtained together with lupeol (4), stigmasterol (5), 3-O-β-d-glucopyranoside of β-sitosterol (6), tormentic acid (7) from stems and heptadecanoic acid (8), β-carotene (9), oleanolic acid (10), and 24-hydroxytormentic acid (11) from leaves. The structures were determined on the basis of NMR data (1H-, 13C-, 2D-NMR analyses), mass spectrometry and confirmed by chemical transformations as well as comparison of spectral data with those reported in the literature. The FRAP method was used to evaluate the antioxidant activity of fractions collected from flash chromatography and isolated compounds. Among the fractions, four reduced FeIII-TPTZ to FeII-TPTZ while isolated pure compounds showed no activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Scheme 2
Scheme 3
Scheme 4

Similar content being viewed by others

Abbreviations

APT:

Attached proton test

CC:

Column chromatography

COSY:

Correlation spectroscopy

FRAP:

Ferric reducing ability of plasma

FT-IR:

Fourier transformed infra-red

HMBC:

Heteronuclear multiple bond correlation

HSQC:

Heteronuclear single quantum correlation

HR-ESI-MS:

Higher resolution electrospray mass spectrometry

LCB:

Long chain base

MALDI-TOF-MS:

Matrix assisted laser desorption ionisation-time of flight-mass spectrometry

NMR:

Nuclear magnetic resonance

NOESY:

Nuclear overhauser effect spectroscopy

References

  1. Mahato SB, Kundu AP (1994) 13C NMR Spectra of pentacyclic triterpenoids—a compilation and some salient features. Phytochemistry 37:1517–1575

    Article  CAS  Google Scholar 

  2. De-Eknamkul W, Buppachart P (2003) Biosynthesis of β-sitosterol and stigmasterol in Croton sublyratus proceeds via a mixed origin of isoprene units. Phytochemistry 62:389–398

    Article  CAS  Google Scholar 

  3. Walter ED (1963) Isolation of β-sitosterol, β-sitosteryl-d-glucoside, and palmitic acid from coastal Bermuda grass and orchard grass. J Pharm Sci 52:708

    Article  CAS  Google Scholar 

  4. Namata A, Yang P, Takahashi C, Fujiki R, Nabae M, Fujita E (1989) Cytotoxic triterpenes from a Chinese medicine, goreishi. Chem Pharm Bull 37:648–651

    Google Scholar 

  5. Okada S, Tonegawa I, Matsuda H, Murakami M, Yamaguchi K (1997) Braunixanthins 1 and 2, new carotenoids from the green microalga Botryococcus braunii. Tetrahedron 53:11307–11316

    Article  CAS  Google Scholar 

  6. Zhou XH, Kadsai K, Ohtami O, Tanaka O, Nie R, Yang C, Zhou J, Yamasaki K (1992) Oleanane and ursane glucosides from Rubus species. Phytochemistry 31:3642–3644

    Article  CAS  Google Scholar 

  7. Norihiro B, Toshihiro A, Harukuni T, Ken Y, Yosuke T, Hiroyuki A, Motohiko U, Yumiko K, Takashi S, Hoyoku N (2005) Anti-inflammatory and antitumor-promoting effects of the triterpene acids from the leaves of Eriobotrya japonica. Biol Pharm Bull 28:1995–1999

    Article  Google Scholar 

  8. Petr D, Marian H, David V, Alica H, Miroslav K, David B, Lenka M, Milan U, Jan S (2006) Anti-inflammatory and antitumor-promoting effects of the triterpene acids from the leaves of Eriobotrya japonica. Nat Prod Rep 23:394–411

    Article  Google Scholar 

  9. Benzie IFF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of antioxidant power: the FRAP assay. Anal Biochem 239:70–76

    Article  CAS  Google Scholar 

  10. Shoko T, Yoko I, Eri K, Yoshie T, Hideyuki I, Tsutomu H, Hiroshi S, Harukuni T, Hoyoku N, Daigo S, Susumu S, Takashi Y (2002) Production of bioactive triterpenes by Eriobotrya japonica calli. Phytochemistry 59:315–323

    Article  Google Scholar 

  11. Gao JM, Dong ZJ, Liu JK (2001) Cyanoxanthamide, a new ceramide from the Basidiomycetes Russula cyanoxantha. Lipids 36:175–180

    Article  CAS  Google Scholar 

  12. Jung JH, Lee C-O, Kim YC, Kang SS (1996) New bioactive cerebrosides from Arisaema amurense. J Nat Prod 59:319–322

    Article  CAS  Google Scholar 

  13. Hsu FF, Turk J (2001) Structural determination of glycosphingolipids as lithiated adducts by electrospray ionization mass spectrometry using low-energy collisional-activated dissociation on a triple stage quadrupole instrument. J Am Soc Mass Spect 12:61–79

    Article  CAS  Google Scholar 

  14. da Vanderlan SB, Leslie GAA, David GIK (1995) Bioactive and other piperidine alkaloids from Cassia leptophylla. Tetrahedron 51:5929–5934

    Article  Google Scholar 

  15. Toru Y, Kayo Y, Haruhisa K, Yukihiko K, Alison AW, Robert JN, George WJF, Naoki A (2002) New polyhydroxylated pyrrolidine, piperidine, and pyrrolizidine alkaloids from Scilla sibirica. J Nat Prod 65:1875–1881

    Article  Google Scholar 

  16. Wu ZP, Chen Y, Xia B, Wang M, Dong YF, Feng X (2009) Two novel ceramides with a phytosphingolipid and a tertiary amide structure from Zephyranthes candida. Lipids 44:63–70

    Article  CAS  Google Scholar 

  17. Brigida D, Antonio F, Pietro M, Palma O, Severina P (2006) Annurcoic acid: A new antioxidant ursane triterpene from fruits of cv. Annurca apple. Food Chem 98:285–290

    Article  Google Scholar 

  18. Mohammad S, Satwinderjeet K, Mee-Hyang K, Vaqar MA, Farrukh A, Hasan M (2005) Lupeol, a fruit and vegetable based triterpene, induces apoptotic death of human pancreatic adenocarcinoma cells via inhibition of Ras signaling pathway. Carcinogenesis 26:1956–1964

    Article  Google Scholar 

  19. Chikako M, Kiyomi I, Mitsuru H, Kengo S, Hiromi Y, Yoshiyuki M (2002) Novel anti-inflammatory compounds from Rubus sieboldii, triterpenoids, are inhibitors of mammalian DNA polymerases. Biochim et Biophys Acta 1596:193–200

    Google Scholar 

  20. Eun HA, Joseph JS (2002) Sphingoid bases and ceramide induce apoptosis in HT-29 and HCT-116 human colon cancer cells. Exp Biol Med 227:345–353

    Google Scholar 

Download references

Acknowledgments

L. P. Sandjo would like to thank EGIDE and SCAC (Service de Cooperation et d’Actions Culturelles: French Grant Government No. 607832K) for their financial support. I would also like to thank the LSMCL (Laboratoire de Spectrométrie de Masse et Chimie Laser) for the MALDI-TOF-MS analyses and Serge Schneider for the LC-MS analyses.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Louis Pergaud Sandjo or Bonaventure Tchaleu Ngadjui.

About this article

Cite this article

Sandjo, L.P., Tchoukoua, A., Ntede, H.N. et al. New Nortriterpenoid and Ceramides From Stems and Leaves of Cultivated Triumfetta cordifolia A Rich (Tiliaceae). J Am Oil Chem Soc 87, 1167–1177 (2010). https://doi.org/10.1007/s11746-010-1584-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11746-010-1584-z

Keywords

Navigation