Skip to main content
Log in

Antibacterial and Antifungal Activities of the Essential Oils of Two Saltcedar Species from Tunisia

  • Original Paper
  • Published:
Journal of the American Oil Chemists' Society

Abstract

The chemical composition of the volatile constituents from the flowering parts of Suaeda fructicosa and Limonium echioides were analysed by GC-FID and GC-MS. Sixty-five compounds were identified in L. echioides aerial parts. 48 out of 65 were found common to the aerial part of S. fructicosa. Palmitic acid was found as a predominant compound in both tested halophytic oils. Furthermore, the essential oil was tested against six bacteria and four fungi at different concentrations. Both oils, tested at 0.5 and 0.8 mg ml−1, inhibited the visible growth of Staphylococcus aureus, Staphylococcus epidermidis, Micrococcus luteus, Escherichia coli and Salmonella typhimurium, but no antibacterial effect was detected against Pseudomonas aeruginosa. Additionally, both halophytic oils failed to show antifungal activity against all the test fungi when applied at 80, 200 and 500 μg/disc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Szabolcs I (1992) Salt affected soils as the ecosystem for halophytes, International workshop on halophytes for reclamation of saline wastelands and as resource for livestock, Nairobi, Kenya, pp 22–27

  2. Malcolm CV (1993) The potential of halophytes for rehabilitation of degraded land. In: Davidson N, Galloway R (ed) Productive use of saline land. ACIAR Proceed 42:8–11

  3. Keren R (2000) Salinity. In: Sumner ME (ed) Handbook of soil science. CRC Press, NY, pp G3–G25

    Google Scholar 

  4. Caravaca F, Alguacila MM, Torresb P, Roldána A (2005) Plant type mediates rhizospheric microbial activities and soil aggregation in a semiarid Mediterranean salt marsh. Geoderma 124:375–382

    Article  CAS  Google Scholar 

  5. Hamdy A (1995) Saline irrigation: Assessment and management techniques. In: Marcel Dekker Inc (eds) Halophytes and biosaline agriculture. New York, pp 199–400

  6. Mtimet M (1999) Atlas des sols tunisiens. Ed, GRAPHIMED

  7. Le Houérou HN (1991) La Méditerranée en l’an 2050 : impacts respectifs d’une éventuelle évolution climatique et de la démographie sur la végétation, les écosystèmes et l’utilisation des terres, La Météorologie n 36, pp 4–37

  8. Cuénos A, Alapetite G, Labbe A (1954) Flore analytique et synoptique de la Tunisie. cryptogames vasculaires, gymnospermes et monocotylédones. Imprimerie S.E.F.A.N., Tunisie

  9. Alapetite P (1979) Flore de la Tunisie, angiospermes-dicotylédones, apétales-dialypétales. Imprimerie Officielle de la République tunisienne, Tunisie

  10. Alapetite P (1981) Flore de la Tunisie, angiospermes-dicotylédones, gamopétales. Imprimerie Officielle de la République tunisienne, Tunisie

  11. Benwahhoud M, Jouad H, Eddouks M, Lyoussi B (2001) Hypoglycemic effect of Suaeda fructicosa in streptozotocin-induced diabetic rats. J Ethnopharmacol 76:35–38

    Article  CAS  Google Scholar 

  12. Le Floc’h E (1983) Contribution à une étude ethnobotanique de la flore tunisienne. Publications scientifiques tunisiennes. Programme flore et végétation tunisiennes, deuxième partie. Imprimerie Officielle de la République Tunisienne, Tunisie

  13. Chang-Quan W, Min C, Ji-Qiang Z, Bao-Shan W (2007) Betacyanin accumulation in the leaves of C3 halophyte Suaeda salsa L. is induced by watering roots with H2O2. Plant Sci 172(1):1–7

    Google Scholar 

  14. Aniya Y, Miyagi C, Nakandakari A, Kamiya S, Imaizumil N, Ichiba T (2002) Free radical scavenging action of the medicinal herb Limonium wrightii from the Okinawa islands. Phytomedicine 9:239–244

    Article  CAS  Google Scholar 

  15. Murray AP, Rodriguez S, Frontera MA, Tomas MA, Mulet MC (2004) Antioxidant metabolites from Limonium brasiliense (Boiss.) Kuntze. Z. Naturforsch 59c:477–480

    Google Scholar 

  16. Yuh-Chi K, Lie-Chwen L, Wei-Jern T, Cheng-Jen C, Szu-Hao K, Yen-Hui H (2002) Samarangenin B from Limonium sinense suppresses herpes simplex virus type 1 replication in vero cells by regulation of viral macromolecular synthesis. Antimicrob Agents CH 46(9):2854–2864

    Article  CAS  Google Scholar 

  17. Kandil FE, Ahmed KM, Hussieny HA, Soliman AM (2000) A new flavonoid from Limonium axillare. Archiv der pharmazie. J Pharm Med Chem 333:275–277

    Article  CAS  Google Scholar 

  18. Kavimani S, Ilango R, Madheswaran M, Jayakar B, Gupta M, Majumdar UK (1996) Antitumor activity of plumbagin against Dalton′s ascitic lymphoma. Indian J Pharm Sci 58(5):194–196

    CAS  Google Scholar 

  19. Sakagami Y, Murata H, Nakanishi T, Inatomi Y, Watabe K, Iinuma M, Tanaka T, Murata J, Lang FA (2001) Inhibitory effect of plant extracts on production of verotoxin by enterohemorrhagic Escherichia coli O157:H7. J Health Sci 47(5):473–477

    Article  CAS  Google Scholar 

  20. Adams RP (1995) Identification of essential oil components by gas chromatography/mass spectrometry. Allured, Carol Stream, IL

    Google Scholar 

  21. Shibamoto T (1987) Retention indices in essential oil analysis. In: Sandra P, Bicchi C (eds) Capillary gas chromatography in essential oil. Dr. Alfred Heuthig, pp 259–275

  22. Kenneth EA, Denise DS (1994) Anaerobic susceptibility testing slight differences in inoculum size can make a difference in minimum inhibitory concentrations. Diagn Microbiol Infect Dis 191(18):191–195

    Google Scholar 

  23. Sanofi-Diagnostics-Pasteur, Abaques de lecture (1993) Antibiogramme pasteur. Techniques des disques par diffusion en milieu gélosé pour les bactéries à croissance rapide (18 à 24 h) détermination de la sensibilité aux agents antibactériens

  24. Dosso M, Faye Kette H (1995) Documents techniques ANTIBIOTIQUES. Faculté de Médecine d’Abidjan, Université nationale de Côte-d’Ivoire, Côte-d’Ivoire

  25. National Committee for Clinical Laboratory Standards (NCCLS) (1990) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Approved standard M 7-A 2; NCCLS, Villanova, PA, pp G3–G25

  26. May J, Chan CH, King A, Williams L, French GL (2000) Time-kill studies of tea tree oils on clinical isolates. J Antimicrob Chemoth 45:639–643

    Article  CAS  Google Scholar 

  27. Ben Hamida N, Abdelkefi MM, Ben Aissa R, Chaabouni MM (2001) J Essent Oil Res 13:295

    Google Scholar 

  28. Burt S (2004) Essential oils: their antibacterial properties and potential applications in foods—a review. Int J Food Microbiol 94:223–253

    Article  CAS  Google Scholar 

  29. Hammer KA, Carson CF, Riley TV (1999) Antimicrobial activity of essential oils and other plant extracts. J App Microbiol 86:985–990

    Article  CAS  Google Scholar 

  30. Delaquis PJ, Stanich K, Girard B, Mazza G (2002) Antimicrobial activity of individual and mixed fractions of dill, cilantro, coriander and eucalyptus essential oils. Int J Food Microbiol 74:101–109

    Article  CAS  Google Scholar 

  31. Ronda LA, Rybak MJ (2001) Bactericidal activities of two daptomycin regimens against clinical strains of glycopeptide intermediate-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus faecium, and methicillin-resistant Staphylococcus aureus isolates in an In Vitro pharmacodynamic model with simulated endocardial vegetations. Antimicrob Agents Ch 45(2):454–459

    Article  Google Scholar 

  32. Canillac N, Mourey A (2001) Antibacterial activity of the essential oil of Picea excelsa on Listeria, Staphylococcus aureus and coliform bacteria. Food Microbiol 18:261–268

    Article  CAS  Google Scholar 

  33. Vanden Berghe DA, Vlietinck AJ (1991) Screening methods for antibacterial and antiviral agents from higher plants. In: Dey PM, Harbone JB, Hostettman K (eds) Methods in plant biochemistry. Assays for bioactivity, vol 6. Academic Press, London, pp 47–69

    Google Scholar 

  34. Hicheri F, Ben Jannet H, Cheriaa J, Jegham S, Mighri Z (2003) Antibacterial activities of a few prepared derivatives of oleanolic acid and of other natural triterpenic compounds. CR Chim 6:473–483

    Article  CAS  Google Scholar 

  35. Barry AL, Thornsberry C (1991) Susceptibility test: diffusion test procedures. In: Balows Hausler A, Herramann WJ, Isenberg HD, Shadomy HJ (eds) Manual of clinical microbiology, American society for microbiology, Washington, DC

  36. Weber DJ, Ansari R, Gul B, Ajmal Khan M (2007) Potential of halophytes as source of edible oil. J Arid Environ 68(2):315–321

    Article  Google Scholar 

  37. Piccaglia R, Marotti M, Galletti GC (1991) Characterization of essential oil from a Satureja montana L., a chemotype grown in northern Italy. J Essent Oil Res 3:147–152

    CAS  Google Scholar 

  38. Shu CK, Lawrence BM (1977) Reasons for the variation in composition of some commercial essential oils. In: Risch SJ, Ho CT (eds) Spices, flavour chemistry and antioxidant properties, ACS symposium series. vol 660. Washington, DC, USA: American Chemical Society, p 138

  39. Dorman HJD, Deans SG (2000) Antimicrobial agents from plants: antibacterial activity of plant volatile oils. J App Microbiol 88:308–316

    Article  CAS  Google Scholar 

  40. Ruberto G, Baratta MT, Deans SG, Dorman HJD (2000) Antioxidant and antimicrobial activity of Foeniculum vulgare and Crithmum maritimum essential oils. Planta Med 66:687–693

    Article  CAS  Google Scholar 

  41. Senatore F, Napolitano F, Ozcan M (2000) Composition and antibacterial activity of the essential oil from Crithmum maritimum L. (Apiaceae) growing wild in Turkey. Flavour Frag J 15:186–189

    Article  CAS  Google Scholar 

  42. Tsigarida E, Skandamis P, Nychas GJE (2000) Behaviour of Listeria monocytogenes and autochthonous flora on meat stored under aerobic, vacuum and modified atmosphere packaging conditions with or without the presence of oregano essential oil at 5 °C. J Appl Microbiol 89:901–909

    Article  CAS  Google Scholar 

  43. Pintore G, Usai M, Bradesi P, Juliano C, Boatto G, Tomi F, Chessa M, Cerri R, Casanova J (2002) Chemical composition and antimicrobial activity of Rosmarinus officinalis L. oils from Sardinia and Corsica. Flavour Frag J 17:15–19

    Article  CAS  Google Scholar 

  44. Wilkinson JM, Hipwell M, Ryan T, Cavanagh HMA (2003) Bioactivity of Backhousia citriodora: Antibacterial and antifungal activity. J Agr Food Chem 51:76–81

    Article  CAS  Google Scholar 

  45. Nostro A, Germano MP, D-Angelo V, Marino A, Cannatelli MA (2000) Extraction methods and bioautography for evaluation of medicinal plant antimicrobial activity. Lett Appl Microbiol 30:379–384

    Article  CAS  Google Scholar 

  46. Ouattara B, Simard RE, Holley RA, Piette GJP, Bégin A (1997) Antibacterial activity of selected fatty acids and essential oils against six meat spoilage organisms. Int J Food Microbiol 37:155–162

    Article  CAS  Google Scholar 

  47. Yayli N, Yaşar A, Gülec C, Usta A, Kolayl Ş, Coşkunçelebi K, Karaoğlu Ş (2005) Composition and antimicrobial activity of essential oils from Centaurea sessilis and Centaurea armena. Phytochemistry 66:1741–1745

    Article  CAS  Google Scholar 

  48. Ratledge C, Wilkinson SG (1988) An overview of microbial lipids. In: Ratledge C, Wilkinson SG (eds) Microbial lipids, vol 1. Academic Press, London, pp 3–22

  49. Cowan M (1999) Plant products as antimicrobial agents. Clinical Microbiol Rev 12:564–582

    CAS  Google Scholar 

  50. Wendakoon CN, Sakaguchi M (1995) Inhibition of amino acid decarboxylase activity of Enterobacter aerogenes by active components of spices. J Food Protect 58:280–283

    CAS  Google Scholar 

  51. Zakarya D, Fkih-Tetouani S, Hajji F (1993) Chemical composition-Antimicrobial activity relationship of Eucalyptus essential oils. Plantes Médicinales et Phytothérapie 26:331–339

    Google Scholar 

  52. Cimanga K, Kambu K, Tona L, Apers S, De Bruyne T, Hermans N, Totté J, Pieters L, Vlietinck AJ (2002) Correlation between chemical composition and antibacterial activity of essential oils of some aromatic medicinal plants growing in the Democratic Republic of Congo. J Ethnopharmacol 79:213–220

    Article  CAS  Google Scholar 

  53. Saenz MT, Tornos MP, Alvarez A, Fernandez MA, Garcia MD (2004) Antibacterial activity of essential oils of Pimenta racemosa var. terebinthina and Pimenta racemosa var. grisea. Short report. Fitoterapia 75:599–602

    Article  CAS  Google Scholar 

  54. Chang ST, Chen PF, Chang SC (2001) Antibacterial activity of leaf essential oils and their constituents from Cinnamomum osmophloeum. J Ethnopharmacol 77:123–127

    Article  CAS  Google Scholar 

  55. Thoroski J, Blank G, Biliaderis C (1989) Eugenol induced inhibition of extracellular enzyme production by Bacillus cereus. J Food Protect 52(6):399–403

    CAS  Google Scholar 

  56. Azaz D, Demirci F, Satil F, Kurkcuoglu M, Baser KHC (2002) Antimicrobial activity of some Satureja essential oils. Zeitschrift fur Naturforschung 57c:817–821

    Google Scholar 

  57. Ulubelen A, Topcu G, Eris C, Sonmez U, Kartal M, Kurucu S, Bozok-Johansson C (1994) Terpenoids from Salvia sclarea. Phytochemistry 36:971–974

    Article  CAS  Google Scholar 

  58. Delamare APL, Moschen-Pistorello IT, Atti-Serafini LAL, Echeverrigaray S (2007) Antibacterial activity of the essential oils of Salvia officinalis L. and Salvia triloba L. cultivated in South Brazil. Food Chem 100(2):603–608

    Article  CAS  Google Scholar 

  59. Cosentino CI, Tuberoso G, Pisano B, Satta M, Mascia V, Arzedi E, Palmas F (1999) In-vitro antimicrobial activity and chemical composition of Sardinia thymus essential oils. Lett Appl Microbiol 29:130–135

    Article  CAS  Google Scholar 

  60. Bassole IHN, Ouattara AS, Nebie R, Ouattara CAT, Kabore ZI, Traore SA (2003) Chemical composition and antibacterial activities of the essential oils of Lippia chevalieri and Lippia multiflora from Burkina Faso. Phytochemistry 62(2):209–212

    Article  CAS  Google Scholar 

  61. Perez C, Agnese AM, Cabrera JL (1999) The essential oil of Scenecio graveolans (compositae)—chemical composition and antimicrobial activity tests. J Ethnopharmacol 66:91–96

    Article  CAS  Google Scholar 

  62. Costa TR, Fernandes OFL, Santos SC, Oliveira CMA, Liao LM, Ferri PH, Paula JR, Ferreira HD, Sales BHN, Silva MRR (2000) Antifungal activity of volatile constituents of Eugenia dysenterica leaf oil. J Ethnopharmacol 72:111–117

    Article  CAS  Google Scholar 

  63. Griffin SG, Wyllie SG, Markham JL, Leach DN (1999) The role of structure and molecular properties of terpenoids in determining their antimicrobial activity. Flavour Frag J 14:322–332

    Article  CAS  Google Scholar 

  64. Oumzil H, Ghoulami S, Rhajaoui M, Ilidrissi A, Fkih-Tetouani S, Faid M, Benjouad A (2002) Antibacterial and antifungal activity of essential oils of Mentha suaveolens. Phytother Res 16:727–731

    Article  CAS  Google Scholar 

  65. Theis N, Lerdau M (2003) The evolution of function in plant secondary metabolites. Int J Plant Sci 164:93–102

    Article  Google Scholar 

  66. Filipowicz N, Kamiʼnski M, Kurlenda J, Asztemborska M (2003) Antibacterial and antifungal activity of Juniper berry oil and its selected components. Phytother Res 17:227–231

    Article  CAS  Google Scholar 

  67. Mau JL, Lai EYC, Wang NP, Chen CC, Chang CH, Chyau CC (2003) Composition and antioxidant activity of the essential oil from Curcuma zedoaria. Food Chem 82:583–591

    Article  CAS  Google Scholar 

  68. Morton HE (1983) Alcohols. In: Block SS (ed) Disinfection sterilization and preservation. Lea and Febiger, Philadelphia, pp 225–239

    Google Scholar 

  69. Pauli A (2001) Antimicrobial properties of essential oil constituents. Int J Aromather 11(3):126–133

    Article  Google Scholar 

  70. Hashem FA, Saleh MM (1999) Antimicrobial components of some Cruciferae plants. (Diplotaxis harra Forsk and Erucaria microcarpa Boiss). Phytother Res 13(4):329–332

    Article  CAS  Google Scholar 

  71. Yff BTS, Lindsey KL, Taylor MB, Erasmus DG, Jäger AK (2002) The pharmacological screening of Pentanisia prunelloides and the isolation of the antibacterial compound palmitic acid. J Ethnopharmacol 79:101–107

    Article  CAS  Google Scholar 

  72. Gill AO, Delaquis P, Russo P, Holley RA (2002) Evaluation of antilisterial action of cilantro oil on vacuum packed ham. Int J Food Microbiol 73:83–92

    Article  CAS  Google Scholar 

  73. Mourrey A, Canillac N (2002) Anti-Listeria monocytogenes activity of essential oils components of conifers. Food Contr 13:289–292

    Article  Google Scholar 

  74. Kim J, Marshall MR, Wei C (1995) Antibacterial activity of some essential oil components against five foodborne pathogens. J Agr and Food Chem 43:2839–2845

    Article  CAS  Google Scholar 

  75. Baum H, Marre R (2005) Antimicrobial resistance of Escherichia coli and therapeutic implications—a review. Int J Med Microbiol 295:503–511

    Article  CAS  Google Scholar 

  76. Paterson DL (2006) Resistance in Gram-negative bacteria: enterobacteriaceae. Am J Med 119(6A):S20–S28

    Article  CAS  Google Scholar 

  77. Pak-Leung H, River W, King-Sun Y, Shee-Loong L, Marianne L, Gannon M, Frankie C, Kenneth T, Tak-Lun Q (2007) Antimicrobial resistance in Escherichia coli outpatient urinary isolates from women: emerging multidrug resistance phenotypes. Diagn Microbiol Infect Dis 59:439–445

    Article  CAS  Google Scholar 

  78. Hahnel GB, Gould RW (1982) Effects of temperature on biochemical reactions and drug resistance of virulent and avirulent Aeromonas salmonicida. J Fish Dis 5:329–337

    Article  Google Scholar 

  79. Michel C, Bassalert JF (1982) Influence de la température sur les résultats de l’antibiogramme pratiqué par la méthode de diffusion en ichtyopathologie. Ann Rech Vet 13:245–250

    CAS  Google Scholar 

  80. Michel C, Blanc G (2001) Minimal inhibitory concentration methodology in aquaculture: the temperature effect—a review. Aquaculture 196:311–318

    Article  CAS  Google Scholar 

  81. Singh G, Singh OP, Maurya S (2002) Chemical and biocidal investigations on essential oils of some Indian Curcuma species. Prog Cryst Growth CH 45:75–81

    Article  CAS  Google Scholar 

  82. Cheng SS, Liu JY, Hsui YR, Chang ST (2006) Chemical polymorphism and antifungal activity of essential oils from leaves of different provenances of indigenous cinnamon (Cinnamomum osmophloeum). Bioresource Technol 97:306–312

    Article  CAS  Google Scholar 

  83. Magwa ML, Gundidza M, Gweru N, Humphrey G (2006) Chemical composition and biological activities of essential oil from the leaves of Sesuvium portulacastrum. J Ethnopharmacol 103:85–89

    Article  CAS  Google Scholar 

  84. Marino M, Bersani C, Comi G (2001) Impedance measurements to study the antimicrobial activity of essential oils from Lamiacea and Compositae. Int J Food Microbiol 67:187–195

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors are grateful to Dr. Fethia Harzallah Skhiri (High Institute of Biotechnology of Monastir, Tunisia) for the botanical identification and Prof. Amina Bakhrouf (Laboratory of Environment Microbiology. Faculty of Pharmacy, Monastir, Tunisia) for assistance in antibacterial experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zine Mighri.

About this article

Cite this article

Saïdana, D., Mahjoub, S., Boussaada, O. et al. Antibacterial and Antifungal Activities of the Essential Oils of Two Saltcedar Species from Tunisia. J Am Oil Chem Soc 85, 817–826 (2008). https://doi.org/10.1007/s11746-008-1251-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11746-008-1251-9

Keywords

Navigation