Skip to main content
Log in

Thermal Polymerisation and Autoxidation of Technical Grade Linoleic Acid

  • Original Paper
  • Published:
Journal of the American Oil Chemists' Society

Abstract

Oligomerisation of technical grade linoleic acid was studied over a broad temperature range. Effects of water and air were specifically addressed. The products were analysed by size-exclusion chromatography to give directly the concentrations of dimers and trimers. Oligomerisation of technical grade linoleic acid was seen to be dependent on temperature and the activation energy for monomer disappearance was 109 kJ/mol. A phenomenological kinetic model was proposed for the linoleic acid oligomerisation giving good model predictions. The presence of water inhibited the oligomerisation reaction. Extensive dimerisation and trimerisation occurred under a continuous air flow, whereas introduction of air pulses resulted in only a minor enhancement of trimerisation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Brookman R, Gunter D, Kreutzer U, Lindemann M, Plachenka J, Steinberger U (1990) Fatty acids. Ullmann’s Encyclopedia of Industrial Chemistry, vol A10. VCH Verlagsgesellschaft mbH, Weinheim

  2. Ullmann’s Encyclopedia of Industrial Chemistry (2003) 6th edn, vol 13. WILEY-VCH Verlag GmbH & Co, Weinheim

  3. Tolvanen P, Mäki-Arvela P, Kumar N, Eränen K, Sjöholm R, Hemming J, Holmbom B, Salmi T, Murzin DYu (2007) Thermal and catalytic oligomerisation of fatty acids. Appl Catal A Gen 330:1–11

    Article  CAS  Google Scholar 

  4. Patrick P (1964) Tall oil fatty acids modification, West Virginia Pulp and Paper Co. U.S. Patent 3157629

  5. Elsasser AF, McCargar LA (2001) Method of preparing dimeric fatty acids and/or esters thereof containing low residual interesters and the resulting dimeric fatty acids and/or dimeric fatty esters. US Patent 6187903

  6. Heynen HWG, van Opstal WHM, den Otter MJAM (1972) The catalytic dimerization of oleic acid in a continuous flow reactor. Fette Seifen Anstrichmittel 74:677–681

    Article  CAS  Google Scholar 

  7. Brütting R, Spiteller G (1993) Produkte der Dimerisierung ungesättigter Fettsäuren X: Identifierung von Estolidenin der Anfangsphase der Dimerisierung. Fett Wiss Technol 95:193–199

    Article  Google Scholar 

  8. Brütting R, Spiteller G (1994) Produkte der Dimerisierung ungesättigter Fettsäuren XI: Die Fraktion der alicyclischen Dimerfettsäuren. Fett Wiss Technol 96:361–370

    Article  Google Scholar 

  9. Brütting R, Spiteller G (1994) Produkte der Dimerisierung ungesättigter Fettsäuren XII: Die Dimerisierung von Konjuensäure. Fett Wiss Technol 96:445–451

    Article  Google Scholar 

  10. Guner FS (1997) Anchovy oil thermal polymerization kinetics. JAOCS 74(12):1525–1529

    Article  CAS  Google Scholar 

  11. Martin JC, Dobarganes MC, Nour M, Marquez-Ruiz G, Christie WW, Lavillonniere F, Sebedio JL (1998) Effect of fatty acid positional distribution and triacylglycerol composition on lipid byproducts formation during heat treatment: I. Polymer formation. J Am Oil Chem Soc 75(9):1065–1071

    Article  CAS  Google Scholar 

  12. Zmachimskii BS, Trofimov AN, Ryabova E, Chashchin AM (1991) Application of the study of thermal stability of fatty and resin acids in the improvement of tall oil rectification. Gidroliz Lesokhimicheskaya Promyshlennost 1:17–19

    Google Scholar 

  13. Stage H (1975) Probleme der grosstechnischen destillativen Aufarbeitung von Rapsölfettsäuren. Fette Seifen Anstrichmittel 77(5):174–180

    Article  CAS  Google Scholar 

  14. Litwinienko G, Kasprzycka-Guttman T (2000) Study on the autoxidation kinetics of fat compounds by differential scanning calorimetry. 2. Unsaturated fatty acids and their esters. Ind Eng Chem Res 39:13–17

    Article  CAS  Google Scholar 

  15. Allen RR, Kummerow FA (1951) Factors affecting the stability of highly unsaturated fat acids. III. The autoxidation of methyl eleostearate. J Am Oil Chem Soc 28:101–105

    Article  CAS  Google Scholar 

  16. Wang C, Erhan S (1999) Studies of thermal polymerization of vegetable oils with a differential scanning calorimeter. JAOCS 76(10):1211–1216

    Article  CAS  Google Scholar 

  17. Micciche F, van Haveren J, Ostveen E, Ming W, van der Linde R (2006) Oxidation and oligomerisation of ethyl linoleate under the influence of the combination of ascorbic acid 6-palmitate/iron-2-ethylhexanoate. Appl Catal A Gen 297:174–181

    Article  CAS  Google Scholar 

  18. Brat J, Schwarz W, Zajfc J (1995) Beurteilung der Kinetik der Polymerisation von Fettsäuren. Fett Wiss Technol Sonderausg 2:513–517

    Google Scholar 

  19. Haario H (2002) ModEst, 6.1. Software for kinetic modeling. ProfMath, Helsinki

    Google Scholar 

  20. Marquardt DW (1963) An algorithm for least squares estimation of nonlinear parameters. J Soc Indust Appl Math 11:431–441

    Article  Google Scholar 

  21. Frankel EN (1998) Lipid oxidation. The Oily Press, Dundee (UK)

    Google Scholar 

Download references

Acknowledgments

This work is part of the activities at the Åbo Akademi Process Chemistry Centre (ÅA-PCC) within the Finnish Centre of Excellence Programme (2000–2011) appointed by the Academy of Finland. The authors acknowledge J. Hemming for his help in performing SEC-analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Yu. Murzin.

About this article

Cite this article

Tolvanen, P., Mäki-Arvela, P., Eränen, K. et al. Thermal Polymerisation and Autoxidation of Technical Grade Linoleic Acid. J Am Oil Chem Soc 85, 567–572 (2008). https://doi.org/10.1007/s11746-008-1229-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11746-008-1229-7

Keywords

Navigation