Skip to main content
Log in

Synthesis of hyperbranched P poly(glycerol-diacid) oligomers

  • Articles
  • Published:
Journal of the American Oil Chemists' Society

Abstract

Novel oligomeric prepolymers were synthesized by acid-catalyzed condensation of glycerol with iminodiacetic, azelaic, or succinic acid. The prepolymers were obtained, on average, in 62% yield and were characterized by 13C NMR, 1H NMR, matrix-assisted laser desorption ionization-time of flight-mass spectrometry, and gel permeation chromatography. The synthesized oligomers had an average M.W. of 1543 Daltons (average polydispersity (PD)=1.34, average degree of polymerization (DOP)=5.5). Hyperbranching was evident in the oligomers produced when using azelaic acid and succinic acid as co-monomers with glycerol, whereas the reaction between iminodiacetic acid and glycerol resulted in linear products bearing cyclic urethane structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gunstone, F.D., and M.P.D. Henning, Glycerol—An Important Product in the Oleochemical Industry, Lipid Technol. 16:177–179 (2004).

    Google Scholar 

  2. Sunder, A., R. Hanselmann, H. Frey, and R. Mulhaupt, Controlled Synthesis of Hyperbranched Polyglycerols by Ring-Opening Multibranching Polymerization, Macromolecules 32:4240–4246 (1999).

    Article  CAS  Google Scholar 

  3. Carnahan, M.A., and M. W. Grinstaff, Synthesi of Poly(glycerol-succinic acid) Dendrimers, Macromolecules 34:7648–7655 (2001).

    Article  CAS  Google Scholar 

  4. Flory, P.J., Molecular Size Distribution in Three Dimensional Polymers. IV. Branched Polymers Containing A-R-Bf-1 Type Units, J. Am. Chem. Soc. 74:2718–2723 (1952)

    Article  CAS  Google Scholar 

  5. Lin, Q., and T.E. Long, Polymerization of A2 with B3 Monomers: A Facile Approach to Hyperbranched Poly(aryl ester)s. Macromolecules 36:9808–9816 (2003).

    Google Scholar 

  6. Stumbe, J-F., and B. Brunchmann, Hyperbranched Polyesters Based on Adipic Acid and Glycerol, Macromol. Rapid Commun. 25:921–924 (2004).

    Article  CAS  Google Scholar 

  7. Kulshrestha, A.S., W. Gao, and R.A. Gross, Glycerol Copolyesters: Control of Branching and Molecular Weight Using Lipase Catalyst, Macromolecules 38:3193–3204 (2005).

    Article  CAS  Google Scholar 

  8. Jikei, M., and M.A. Kakimoto, Hyperbranched Aromatic Polyamides Prepared by Direct Polycondensation, High Perform. Polym. 13:33–43 (2001).

    Article  Google Scholar 

  9. Hao, J., M. Jikei, and M. Kakimoto, Synthesis and Comparison of Hyperbranched Aromatic Polyimides Having the Same Repeating Unit by AB2 Self-polymerization and A2+B3 Polymerization, Macromolecules 36:3519 (2003).

    Article  CAS  Google Scholar 

  10. Fang, J., and H. Kita and K Okamoto, Hyerbranched Polyimide for Gas Separation Applications. I. Synthesis and Characterization, ——Ibid. 33:4639–4646 (2000).

    Article  CAS  Google Scholar 

  11. Frazza, E.J., and E.E. Schmitt, A New Absorbable Suture, J. Biomed. Mater. Res. Symp. 1:43–58 (1971).

    Article  Google Scholar 

  12. Vert, M., and S.M. Li, Bioresorbability and Biocompatibility of Aliphatic Polyesters, J. Mater. Sci. Mater. Med. 3:432–446 (1992).

    Article  CAS  Google Scholar 

  13. Shalaby, S.W., and R.A. Johnson, Synthetic Absorbable Polyesters, in Biomedical Polymers, edited by S.W. Shalaby, Carl Hanser Verlag, Munchen, 1994, pp. 2–34.

    Google Scholar 

  14. Seiler, M., D. Kohler, and W. Arlt, Hyperbranched Polymers: New Selective Solvents for Extractive Distillation and Solvent Extraction, Sep. Purif. Technol. 30:179–197 (2003).

    Article  CAS  Google Scholar 

  15. Emrick, T., H.T. Chang, and J.M.J. Frechet, An A2+B3 Approach to Hyperbranched Aliphatic Polyethers Containing Chain End Epoxy Substituents, Macromolecules 32:6380–6382 (1999).

    Article  CAS  Google Scholar 

  16. Komber, H., B.I. Voit, O. Monticelli, and S. Russo, 1H and 13C NMR Spectra of a Hyperbranched Aromatic Polyamide from p-Phenylenediamine and Trimesic Acid, ——Ibid. 34:5487–5493 (2001).

    Article  CAS  Google Scholar 

  17. Kricheldorf, H.R., D. Fritsch, L. Vakhtangishvili, and G. Schwartz, Multicyclic Poly(ether sulfone) of Phloroglucinol Forming Branched and Cross-Linked Architectures, ——Ibid. 36:4337–4344 (2003).

    Article  CAS  Google Scholar 

  18. Kricheldorf, H.R., L. Vakhtangishvili, and D. Fritsch, Synthesis and Functionalization of Poly(ether sulfone)s Based on 1,1,1-Tris(4-hydroxyphenyl)ethane, J. Polym. Sci., Part A: Polym. Chem. 40:2967–2978 (2002).

    Article  CAS  Google Scholar 

  19. Fritsch, D., L. Vakhtangishvili, and H.R. Kricheldorf, Syntheses of Branched Poly(Ether Ketone)s with Pendant Functional Groups Based on 1,1,1-tris(4-hydroxyphenyl)ethane, J. Macromol. Sci. Pure Appl. Chem. 39:1335–1347 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Wyatt, V.T., Nuñez, A., Foglia, T.A. et al. Synthesis of hyperbranched P poly(glycerol-diacid) oligomers. J Amer Oil Chem Soc 83, 1033–1039 (2006). https://doi.org/10.1007/s11746-006-5159-y

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11746-006-5159-y

Key Words

Navigation