Skip to main content
Log in

Practical implications of the phase-compositional assessment of lipid-based food products by time-domain NMR

  • Published:
Journal of the American Oil Chemists' Society

Abstract

The objective of this work is to determine the solid fat content (SFC) of the fat-oil phase in oil-in-water (O/W) emulsions, i.e., the droplet SFC, using transverse relaxation decay deconvolution (TRDD) analysis. The TRDD NMR experiment classifies protein protons as mobile, semimobile, and nonmobile. Hence, protein contributes more or less to the solid content detected by TRDD as a function of pH, protein content, and protein denaturation. By taking into account the protein contribution to the overall solid content, one can estimate the droplet solid content in O/W emulsions. The SFC can then be deduced if one converts the ingredients' mass fraction into ingredients' proton fraction using the ingredients' proton densities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gidley, M.J., S.A. Ablett, and D.R. Martin, The Food Supply Chain: The Present Role and Future Potential of NMR, in Magnetic Resonance in Food Science—Latest Developments, edited by P.S. Belton, A.M. Gil, G.A. Webb, and D. Ruthledge, The Royal Society of Chemistry, Cambridge, 2003, pp. 3–16.

    Google Scholar 

  2. Bot, A., E. Flöter, J.G. Lammers, and E.G. Pelan, Controlling the Texture of Spreads, in Texture in Food: Semi-solid Foods, edited by B.M. McKenna, Woodhead, Cambridge, United Kingdom, 2003, pp. 350–372.

    Google Scholar 

  3. Champion, D., M. Le Meste, and D. Simatos, Towards an Improved Understanding of Glass Transition and Relaxations in Foods: Molecular Mobility in the Glass Transition Range, Trends Food Sci. Technol. 11:41–55. (2000).

    Article  CAS  Google Scholar 

  4. Ruan, R.R., and P.L. Chen, Water in Foods and Biological Materials: A Nuclear Magnetic Resonance Approach, CRC Press, Boca Raton, 1998.

    Google Scholar 

  5. Widlak, N. (ed.), Physical Properties of Fats, Oils and Emulsifiers, AOCS Press, Champaign, 2000.

    Google Scholar 

  6. van Putte, K., and J. van den Enden, Fully Automated Determination of Solid Fat Content by Pulsed NMR, J. Am. Oil Chem. Soc. 51:316–320 (1973).

    Google Scholar 

  7. Clark, A.H., and P.J. Lillford, Evaluation of a Deconvolution Approach to the Analysis of NMR Relaxation Decay Functions, J. Magn. Reson. 41:42–60 (1980).

    CAS  Google Scholar 

  8. Trezza, E., A.M. Haiduc, and J.P.M. van Duynhoven, Comprehensive Phase-Compositional Analysis of Lipid Based Food Products, in Magnetic Resonance in Food Science, edited by P.S. Belton, A.M. Gil, G.A. Webb, and D. Rutledge, RSC Books, London, 2005, pp. 217–224.

    Google Scholar 

  9. Trezza, E., A.M. Haiduc, G.J.W. Goudappel, and J.P.M. van Duynhoven, Rapid Phase Compositional Assessment of Lipid Based Food Products by Time Domain NMR, Magn. Reson. Chem. (in press):doi number 10.1002/mrc.1893.

  10. van den Dries, I.J., N.A.M. Besseling, D. van Dusschoten, M.A. Hemminga, and E. van der Linden, Relation Between a Transition in Molecular Mobility and Collapse Phenomena in Glucose-Water Systems, J. Phys. Chem. B 104:9260–9266 (2000).

    Article  CAS  Google Scholar 

  11. Derbyshire, W., M. van den Bosch, D. van Dusschoten, W. MacNaughtan, I.A. Farhat, M.A. Hemminga, and J.R. Mitchell, Fitting of the Beat Pattern Observed in NMR Free-Induction Decay Signals of Concentrated Carbohydrate-Water Solutions, J. Magn. Reson. 168:278–283 (2004).

    Article  CAS  Google Scholar 

  12. LeBotlan, D., and I. Helie-Fourel, Assessment of the Intermediate Phase in Milk-Fat by Low-Resolution Nuclear-Magnetic-Resonance, Anal. Chim. Acta 311:217–223 (1995).

    Article  CAS  Google Scholar 

  13. Goetz, J., and P. Koehler, Study of the Thermal Denaturation of Selected Proteins of Whey and Egg by Low Resolution NMR, Food Sci. Technol./Lebensm. Wissen. Technol. 38:501–512 (2005).

    CAS  Google Scholar 

  14. LeBotlan, D.J., and L. Ouguerram, Spin-Spin Relaxation Time Determination of Intermediate States in Heterogeneous Products from Free Induction Decay NMR Signals, Anal. Chim. Acta 349:339–347 (1997).

    Article  CAS  Google Scholar 

  15. Mariette, F., and T. Lucas, NMR Signal Analysis to Attribute the Components to the Solid/Liquid Phases Present in Mixes and Ice Creams, J. Agric. Food Chem. 53:1317–1327 (2005).

    Article  CAS  Google Scholar 

  16. Bot, A., F.A.M. Kleinherenbrink, M. Mellema, and C.K. Reiffers-Magnani, Cream Cheese as an Acidified Protein-Stabilized Emulsion Gel, in Handbook of Food Products Manufacturing, edited by Y.H. Hui et al., Wiley, New York, 2007, Chapter 28, in press.

    Google Scholar 

  17. Kiokias, S., C.K. Reiffers-Magnani, and A. Bot, Stability of Whey-Protein-Stabilized Oil-in-Water Emulsions During Chilled Storage and Temperature Cycling, J. Agric. Food Chem. 52:3823–3830 (2004).

    Article  CAS  Google Scholar 

  18. Kiokias, S., and A. Bot, Temperature Cycling Stability of Preheated Acidified Whey Protein-Stabilised O/W Emulsion Gels in Relation to the Internal Surface Area of the Emulsion, Food Hydrocolloids 20:245–252 (2006).

    Article  CAS  Google Scholar 

  19. Meiboom, S., and D. Gill, Modified Spin-Echo Method for Measuring Nuclear Relaxation Times, Phys. Rev. 29:688–691 (1958).

    CAS  Google Scholar 

  20. Goudappel, G.J.W., M.C.M. Gribnau, V.K.S. Shukla, and J.P.M. van Duynhoven, Solid Fat Content Determination by NMR, INFORM 10:479–484 (1999).

    Google Scholar 

  21. Mills, B.L., and F.R. Vandevoort, Comparison of the Direct and Indirect Wide-Line Nuclear Magnetic-Resonance Methods for Determining Solid Fat Content? J. Am. Oil Chem. Soc. 58:776–778 (1981).

    CAS  Google Scholar 

  22. Gribnau, M.C.M., Determination of Solid/Liquid Ratios of Fats and Oils by Low-Resolution Pulsed NMR, Trends Food Sci. Technol. 3:186–190 (1992).

    Article  CAS  Google Scholar 

  23. van Duynhoven, J.P.M., I. Dubourg, G.J. Goudappel, and E. Roijers, Determination of MG and TG Phase Composition by Time-Domain NMR, J. Am. Oil Chem. Soc. 79:383–388 (2002).

    Article  Google Scholar 

  24. Hills, B.P., S.F. Takacs, and P.S. Belton, The Effects of Proteins on the Proton N.M.R. Transverse Relaxation Times of Water. 1. Native Bovine Serum Albumin, Mol. Phys. 67:903–918 (1989).

    Article  CAS  Google Scholar 

  25. Hills, B.P., S.F. Takacs, and P.S. Belton, The Effects of Proteins on the Proton NMR Transverse Relaxation Time of Water. 2. Protein Aggregation, —Ibid. 67:919–937 (1989).

    Article  CAS  Google Scholar 

  26. Denisov, V.P., and B. Halle, Hydrogen Exchange Rates in Proteins from Water 1H Transverse magnetic Relaxation, J. Am. Oil Chem. Soc. 124:10264–10265 (2002).

    CAS  Google Scholar 

  27. Belton, P.S., Can Nuclear Magnetic Resonance Give Useful Information About the State of Water in Foodstuffs, in Comments Agric. Food Chem. 2:179–209 (1990).

  28. Le Dean, A., F. Mariette, and M. Marin, 1H Nuclear Magnetic Resonance Relaxometry Study of Water State in Milk Protein Mixtures, J. Agric. Food Chem. 52:5449–5455 (2004).

    Article  CAS  Google Scholar 

  29. Belton, P.S., NMR and the Mobility of Water in Polysaccharide Gels, Int. J. Biol. Macromol. 21:81–88 (1997).

    Article  CAS  Google Scholar 

  30. van den Dries, I.J., D. van Dusschoten, and M.A. Hemminga, Mobility in Maltose-Water Glasses Studied with 1H NMR, J. Phys. Chem. B 102:10483–10489 (1998).

    Article  Google Scholar 

  31. Alting, A.C., R.J. Hamer, C.G. de Kruif, and R.W. Visschers, Formation of Disulfide Bonds in Acid-Induced Gels of Preheated Whey Protein Isolate, J. Agric. Food Chem. 48:5001–5007 (2000).

    Article  CAS  Google Scholar 

  32. de Kruif, C.G., M.A.M. Hoffmann, M.E. van Marle, P.J.J.M. Van Mil, S.P.F.M. Roefs, M. Verheul, and N. Zoon, Gelation of Proteins from Milk, Faraday Discuss 101:185–200 (1995).

    Article  Google Scholar 

  33. Verheul, M., and S.P.F.M. Roefs, Structure of Particulate Whey Protein Gels: Effect of NaCl Concentration, pH, Heating Temperature, and Protein Composition, J. Agric. Food. Chem. 46:4909–4916 (1998).

    Article  CAS  Google Scholar 

  34. Vasbinder, A.J., A.C. Alting, R.W. Visschers, and C.G. de Kruif, Texture of Acid Milk Gels: Formation of Disulfide Cross-Links During Acidification, Int. Dairy J 13:29–38 (2003).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arjen Bot.

About this article

Cite this article

Duval, F.P., van Duynhoven, J.P.M. & Bot, A. Practical implications of the phase-compositional assessment of lipid-based food products by time-domain NMR. J Amer Oil Chem Soc 83, 905–912 (2006). https://doi.org/10.1007/s11746-006-5045-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11746-006-5045-7

Key Words

Navigation