Skip to main content
Log in

Influences of subzero thermal acclimation on mitochondrial membrane composition of temperate zone marine bivalve mollusks

  • Published:
Lipids

Abstract

The phospholipid and phospholipid fatty acid composition of gill mitochondrial membranes from two temperate zone marine bivalve mollusks, the quahog, Mercenaria mercenaria, and the American oyster, Crassostrea virginica, were examined after acclimation to 12 and −1°C. Cardiolipin (CL) was the only phospholipid with proportions altered upon acclimation to −1°C, increasing 188% in the mitochondrial membranes of M. mercenaria. Although the ratio of bilayer stabilizing to destabilizing lipids is frequently associated with cold acclimation in ectothermic species, no change was found in this ratio in either of the species. Polyunsaturated fatty acids (PUFA) were found only to increase in C. virginica with cold acclimation, with total n-3 PUFA increasing in the phospholipid phosphatidylethanolamine, total n-6 PUFA increasing in CL, and total PUFA increasing in phosphatidylinositol. Monounsaturated fatty acids, not PUFA, were found to have increased in M. mercenaria, with 18:1n−9 increasing by 150% in CL, and 20∶1 increasing in both CL and phosphatidylcholine, by 146 and 192%, respectively. These manipulations of membrane phospholipid and fatty acid composition may represent an attempt by these species to help maintain membrane function at low temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CL:

cardiolipin

monoene:

monounsaturated fatty acid

PC:

phosphatidylcholine

PC/(PE+CL):

phosphatidylcholine to (phosphatidylethanolamine+cardiolipin) ratio

PE:

phosphatidylethanolamine

PI:

phosphatidylinositol

PS:

phosphatidylserine

PUFA:

polyunsaturated fatty acids

SFA:

saturated fatty acids

SPH:

sphingomyelin

References

  1. Hazel, J.R. (1983) The Incorporation of Unsaturated Fatty Acids of the n-9, n-6, and n-3 Families into Individual Phospholipids by Isolated Hepatocytes of Thermally-Acclimated Rainbow Trout, Salmo gairdneri, J. Exp. Zool. 227, 167–176.

    Article  PubMed  CAS  Google Scholar 

  2. Hazel, J.R., and Carpenter, R. (1985) Rapid Changes in the Phospholipid Composition of Gill Membranes During Thermal Acclimation of the Rainbow Trout, Salmo gairdneri J. Comp. Physiol. 155B, 597–602.

    Google Scholar 

  3. Pollero, R.J., and Brenner, R.R. (1981) Effect of the Environment and Fasting on the Lipid and Fatty Acid Composition of Diplodon patagonicus, Lipids 16, 685–690.

    CAS  Google Scholar 

  4. Chu, F.E., Webb, K.L., and Chen, J. (1990) Seasonal Changes of Lipids and Fatty Acids in Oyster Tissues, Crassostrea virginica, and Estuarine Particulate Matter, Comp. Biochem. Physiol. 95A, 385–391.

    Article  CAS  Google Scholar 

  5. Napolotano, G.E., MacDonald, B.A., Thompson, R.J., and Ackman, R.G. (1992) Lipid Composition of Eggs and Adductor Muscle in Giant Scallops, Placopecten magellanicus, from Different Habitats, Mar. Biol. 223, 71–76.

    Article  Google Scholar 

  6. Peterson, C.H., and Fegley, S.R. (1986) Seasonal Allocation of Resources to Growth of Shell, Soma, and Gonads in Mercenaria mercenaria, Biol. Bull. 171, 587–610.

    Google Scholar 

  7. Bligh, E.G., and Dyer, W.J. (1959) A Rapid Method of Total Lipid Extraction and Purification, Can. J. Biochem. Physiol. 37, 911–917.

    PubMed  CAS  Google Scholar 

  8. Glemet, H.C., and Ballantyne, J.S. (1995) Influences of Environmental Salinity on the Structure and Function of Gill Mitochondrial Membranes of an Osmoconforming Invertebrate, Crassostrea virginica, Mar. Biol. 121, 673–683.

    Article  Google Scholar 

  9. Holub, B.J., and Skeaff, C.M. (1987) Nutritional Regulation of Cellular Phosphatidylinositol, Methods Enzym. 141, 234–244.

    CAS  Google Scholar 

  10. Stuart, J.A., and Ballantyne, J.S. (1996) Subcellular Organization of Intermediatry Metabolism in the Hepatopancreas of the Terrestrial Snail, Cepaea nemoralis—A Cytosolic β-Hydroxybutyrate Dehydrogenase, J. Exp. Zool. 274, 291–299.

    Article  CAS  Google Scholar 

  11. Aronson, N., and Touster, O. (1974) Isolation of Rat Liver Plasma Membrane Fragments in Isotonic Sucrose, Methods Enzym. 31, 90–102.

    Article  CAS  Google Scholar 

  12. Chen, P.S., Toribara, T.Y., and Warner, H. (1956) Microdetermination of Phosphorus, Anal. Chem. 28, 1756–1758.

    Article  CAS  Google Scholar 

  13. Bradford, M.M. (1976) A Rapid Sensitive Method for Quantification of Microgram Quantities of Protein Using the Principle of Protein Dye Binding, Anal. Biochem. 172, 248–254.

    Article  Google Scholar 

  14. Steele, R.G.D., and Torrie, J.H. (1980) Principles and Procedures of Statistics: A Biometrical Approach, 633 pp., McGraw-Hill Inc., New York.

    Google Scholar 

  15. Daum, G. (1985) Lipids of Mitochondria, Biochim. Biophys. Acta 822, 1–42.

    PubMed  CAS  Google Scholar 

  16. Hazel, J.R. (1995) Thermal Adaptation in Biological Membranes: Is Homeoviscous Adaptation the Explanation?, Annu. Rev. Physiol. 57, 19–42.

    PubMed  CAS  Google Scholar 

  17. Hazel, J.R., and Zerba, E. (1986) Adaptation of Biological Membranes to Temperature: Molecular Species Compositions of Phosphatidylcholine and Phosphatidylethanolamine in Mitochondrial and Microsomal Membranes of Liver from Thermally-Acclimated Rainbow Trout, J. Comp. Physiol. 156B, 665–674.

    Google Scholar 

  18. Pruitt, N.L. (1988) Membrane Lipid Composition and Overwintering Strategy in Thermally Acclimated Crayfish, Am. J. Physiol. 254, R870-R876.

    PubMed  CAS  Google Scholar 

  19. Thurmond, R.L., and Lindblom, G. (1997) NMR Studies of Membrane Lipid Properties, in Current Topics in Membranes (Epand, R., ed.) Vol. 44, pp. 103–166, Academic Press, New York.

    Google Scholar 

  20. Rand, R.P., and Sengupta, S. (1972) Cardiolipin Forms Hexagonal Structures with Divalent Cations, Biochim. Biophys. Acta 255, 484–492.

    Article  PubMed  CAS  Google Scholar 

  21. Cullis, P.R., Verkleij, A.J., and Ververgaert, P.H.J.Th. (1978) Polymorphic Phase Behaviour of Cardiolipin as Detected by 31P NMR and Freeze-Fracture Techniques. Biochim. Biophys. Acta 513, 11–20.

    Article  PubMed  CAS  Google Scholar 

  22. De Kruijff, B., and Cullis, P.R. (1980) Cytochrome c Specifically Induces Non-Bilayer Structures in Cardiolipin-Containing Model Membranes, Biochim. Biophys. Acta 602, 477–490.

    Article  PubMed  Google Scholar 

  23. Sinensky, M. (1974) Homeoviscous Adaptation—A Homeostatic Process That Regulates the Viscosity of Membrane Lipids in Escherichia coli, Proc. Natl. Acad. Sci. USA 71, 522–525.

    Article  PubMed  CAS  Google Scholar 

  24. Chapelle, S. (1978) The Influence of Acclimation Temperature on the Fatty Acid Composition of an Aquatic Crustacean, Carcinus maenas, J. Exp. Zool. 204, 337–346.

    Article  CAS  Google Scholar 

  25. Wodtke, E. (1981) The Effects of Acclimation Temperature on the Unsaturation of the Main Neutral and Charged Phospholipids in Mitochondrial Membranes of the Carp, Cyprinus carpio, Biochim. Biophys. Acta 640, 698–709.

    CAS  Google Scholar 

  26. Coolbear, K.P., Berde, C.B., and Keough, K.M.W. (1983) Gel to Liquid-Crystalline Phase Transitions of Aqueous Dispersions of Polyunsaturated Mixed-Acid Phosphatidylcholines, Biochemistry 22, 1466–1473.

    Article  PubMed  CAS  Google Scholar 

  27. Dey, I., Buda, C., Wiik, T., Halver, J.E., and Farkas, T. (1993) Molecular and Structural Composition of Phospholipid Membranes in Livers of Marine and Freshwater Fish in Relation to Temperature, Proc. Natl. Acad. Sci. USA 90, 7498–7502.

    Article  PubMed  CAS  Google Scholar 

  28. Fodor, E., Jones, R.H., Buda, C., Kitajka, K., Dey, I., and Farkas, T. (1995) Molecular Architecture and Biophysical Properties of Phospholipids During Thermal Adaptation in Fish: An Experimental and Model Study, Lipids 30, 1119–1126.

    PubMed  CAS  Google Scholar 

  29. DeMoreno, J.E.A., Moreno, V.J., and Brenner, K.R. (1976) Lipid Metabolism of the Yellow Clam, Mesodesma matroides, 2. Polyunsaturated Fatty Acid Metabolism, Lipids 11, 561–566.

    CAS  Google Scholar 

  30. Waldock, M.J., and Holland, D.L. (1984) Fatty Acid Metabolism in Young Oysters Crassostrea virginica, Polyunsaturated Fatty Acids, Lipids 19, 332–336.

    CAS  Google Scholar 

  31. Chu, F.-L.E., and Greaves, J. (1991) Metabolism of Palmitic, Linoleic, and Linolenic Acids in Adult Oysters, Crassostrea virginica, Mar. Biol. 110, 229–236.

    Article  CAS  Google Scholar 

  32. Glemet, H.C., and Ballantyne, J.S. (1997) Comparisons of Liver Mitochondrial Membranes from an Agnathan, Myxine glutinosa, an Elasmobranch, Raja erinacea, and a Teleost Fish, Pleuronectes americanus, Mar. Biol. 124, 509–518.

    Article  Google Scholar 

  33. Glemet, H.C., Gerrits, M.F., and Ballantyne, J.S., Membrane Lipids of Red Muscle Mitochondria from Land-Locked and Sea Run Arctic Char, Salvelinus alpinus, Mar. Biol. 129, 673–679.

  34. Sargent, J.R., Bell, M.V., Henderson, R.J., and Tocher, D.R. (1990) Polyunsaturated Fatty Acids in Marine and Terrestrial Food Webs, in Comparative Physiology (Kinne, R.K.H., Kinne-Saffran, E., and Beyenbach, K.W., eds.) Vol. 6, pp. 11–23, S. Karger, Basel.

    Google Scholar 

  35. Van Den Thillart, G., and De Bruin, G. (1981) Influence of Environmental Temperature on Mitochondrial Membranes, Biochim. Biophys. Acta 640, 439–447.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James S. Ballantyne.

About this article

Cite this article

Gillis, T.E., Ballantyne, J.S. Influences of subzero thermal acclimation on mitochondrial membrane composition of temperate zone marine bivalve mollusks. Lipids 34, 59–66 (1999). https://doi.org/10.1007/s11745-999-338-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-999-338-z

Keywords

Navigation