Skip to main content
Log in

3-thia fatty acid treatment, in contrast to eicosapentaenoic acid and starvation, induces gene expression of carnitine palmitoyltransferase-II in rat liver

  • Published:
Lipids

Abstract

The aim of the present study was to investigate the hepatic regulation and β-oxidation of long-chain fatty acids in peroxisomes and mitochondria, after 3-thia- tetradecylthioacetic acid (C14-S-acetic acid) treatment. When palmitoyl-CoA and palmitoyl-l-carnitine were used as substrates, hepatic formation of acid-soluble products was significantly increased in C14-S-acetic acid treated rats. Administration of C14-S-acetic acid resulted in increased enzyme activity and mRNA levels of hepatic mitochondrial carnitine palmitoyltransferase (CPT)-II. CPT-II activity correlated with both palmitoyl-CoA and palmitoyl-l-carnitine oxidation in rats treated with different chain-length 3-thia fatty acids. CPT-I activity and mRNA levels were, however, marginally affected. The hepatic CPT-II activity was mainly localized in the mitochondrial fraction, whereas the CPT-I activity was enriched in the mitochondrial, peroxisomal, and microsomal fractions. In C14-S-acetic acid-treated rats, the specific activity of peroxisomal and microsomal CPT-I increased, whereas the mitochondrial activity tended to decrease. C14-S-Acetyl-CoA inhibited CPT-I activity in vitro. The sensitivity of CPT-I to malonyl-CoA was unchanged, and the hepatic malonyl-CoA concentration increased after C14-S-acetic acid treatment. The mRNA levels of acetyl-CoA carboxylase increased. In hepatocytes cultured from palmitic acid- and C14-S-acetic acid-treated rats, the CPT-I inhibitor etomoxir inhibited the formation of acid-soluble products 91 and 21%, respectively. In contrast to 3-thia fatty acid treatment, eicosapentaenoic acid treatment and starvation increased the mitochondrial CPT-I activity and reduced its malonyl-CoA sensitivity. Palmitoyl-l-carnitine oxidation and CPT-II activity were, however, unchanged after either EPA treatment or starvation. The results from this study open the possibility that the rate control of mitochondrial β-oxidation under mitochondrion and peroxisome proliferation is distributed between an enzyme or enzymes of the pathway beyond the CPT-I site after 3-thia fatty acid treatment. It is suggested that fatty acids are partly oxidized in the peroxisomes before entering the mitochondria as acylcarnitines for further oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C14-S-Acetic acid:

tetradecylthioacetic acid

BSA:

bovine serum albumin

CMC:

carboxymethyl cellulose

CPT:

carnitine palmitoyl-transferase

EPA:

cicosapentaenoic acid

PPAR:

peroxisome proliferator activated receptor, Enzymes: carnitine palmitoyltransferase (EC 23.1.21)

acetyl-CoA:

carboxylase (EC 6.4.1.2)

References

  1. Berge, R.K., and Hvattum, E. (1994) Impact of Cytochrome P450 System on Lipoprotein Metabolism, Effect of Abnormal Fatty Acids (3-thia fatty acids), Pharmacol. Ther. 61, 34–383.

    Article  Google Scholar 

  2. Skorve, J., Al-Shurbaji, A., Asiedu, D., Björkhem I., Berglund, L., and Berge, R.K. (1993) On the Mechanism of the Hypolipidemic Effect of Sulfur-Substituted Hexadecanedioic Acid (3-thiadicarboxylic acid) in Normolipidemic Rats, J. Lipid. Res. 34, 1177–1185.

    PubMed  CAS  Google Scholar 

  3. Skrede, S., Bremer, J., Berge, R.K., and Rustan, A.C. (1994) Stimulation of Fatty Acid Oxidation by a 3-Thia Fatty Acid Reduces Triacylglycerol Secretion in Cultured Rat Hepatocytes, J. Lipid Res. 35, 1395–1404.

    PubMed  CAS  Google Scholar 

  4. Asiedu, D.K., Al-Shurbaji, A., Rustan, A.C., Björkhem, I., Berglund, L., and Berge, R.K. (1995) Hepatic Fatty Acid Metabolism as a Determinant of Plasma and Liver Triacylglycerol Levels, Eur. J. Biochem. 227, 715–722.

    Article  PubMed  CAS  Google Scholar 

  5. Frøyland, L., Madsen, L., Vaagenes, H., Totland, G.K., Auwerx, J., Kryvi, H., Staels, B., and Berge, R.K. (1997) Mitochondrion Is the Principal Target for Nutritional and Pharmacological Control of Triglyceride Metabolism, J. Lipid Res. 38, 1851–1858.

    PubMed  Google Scholar 

  6. Willumsen, N., Skorve, J., Hexeberg, S., Rustan, A.C., and Berge, R.K. (1993) The Hypotriglyceridemic Effect of Eicosapentaenoic Acid in Rats Is Reflected in Increased Mitochondrial Fatty Acid Oxidation Followed by Diminished Lipogenesis, Lipids 28, 683–689.

    PubMed  CAS  Google Scholar 

  7. Willumsen, N., Vaagenes, H., Asiedu, D., Lie, Ø., Rustan, A.C., and Berge, R.K. (1996) Eicosapentaenoic Acid but Not Docosahexaenoic Acid (both as ethyl esters) Increases Mitochondrial Fatty Acid Oxidation and Upregulates 2,4-Dienoyl-CoA Reductase Gene Expression. A Potential Mechanism for the Hypolipidemic Action of Fish Oil in Rats, Lipids 31, 579–592.

    Article  PubMed  CAS  Google Scholar 

  8. Frøyland, L., Vaagenes, H., Asiedu, D., Garras, A., Lie, Ø., and Berge, R.K. (1996) Chronic Administration of Eicosapentaenoic Acid and Docosahexaenoic Acid as Ethyl Esters Reduced Plasma Cholesterol and Changed the Fatty Acid Composition in Rat Blood and Organs, Lipids 31, 169–178.

    Article  PubMed  Google Scholar 

  9. McGarry, J.D., and Brown, N.F. (1997) The Mitochondrial Carnitine Palmitoyltransferase System. From Concept to Molecular Analysis, Eur. J. Biochem. 244, 1–14.

    Article  PubMed  CAS  Google Scholar 

  10. Clarke, S.D., Baillie, R., Jump, D.B., and Nakamura, M.T. (1997) Fatty Acid Regulation of Gene Expression. Its Role in Fuel Partitioning and Insulin Resistance, Ann. NY. Acad. Sci. 827, 178–187.

    PubMed  CAS  Google Scholar 

  11. Chatelain, F., Kohl, C., Esser, V., McGarry, J.D., Girard, J., and Pegorier, J.-P. (1996) Cyclic AMP and Fatty Acids Increase Carnitine Palmitoyltransferase I Gene Transcription in Cultured Fetal Rat Hepatocytes, Eur. J. Biochem. 235, 789–798.

    Article  PubMed  CAS  Google Scholar 

  12. Grav, H., Asiedu, D., and Berge, R.K. (1994) Gas Chromatographic Measurement of 3- and 4-Thia Fatty Acids Incorporated into Various Classes of Rat Liver Lipids During Feeding Experiments, J. Chromatogr. B 658, 1–10.

    Article  CAS  Google Scholar 

  13. Madsen, L., Frøyland, L., Grav, H., and Berge, R.K. (1997) Upregulated Δ9-Desaturase Gene Expression by Hypolipidemic Peroxisome Proliferating Fatty Acids Resulted in Increased Oleic Acid Content in Liver and VLDL: Accumulation of a Δ9-Desaturased Metabolite of Tetradecylthioacetic Acid, J. Lipid Res. 38, 554–563.

    PubMed  CAS  Google Scholar 

  14. Göttlicher, M., Demoz, A., Svensson, D., Tollet, P., Berger, R.K., and Gustafsson, J.-Å. (1993) Structural and Metabolic Requirements for Activators of the Peroxisome Proliferator Activated Receptor, Biochem. Pharmacol. 46, 2177–2184.

    Article  PubMed  Google Scholar 

  15. Forman, B.M., Chen, J., and Evans, R.M. (1997) Hypolipidemic Drugs, Polyunsaturated Fatty Acids, and Eicosanoids Are Ligands for Peroxisome Proliferaor-Activated Receptors α and δ, Proc. Natl. Acad. Sci. USA 94, 4312–4317.

    Article  PubMed  CAS  Google Scholar 

  16. Kliewer, S.A., Sundseth, S.S., Jones, S.A., Brown, P.J., Wisely, G.B., Koble, C.S., Devchand P., Wahli, W., Willson, T.M., Lenhard, J.M., and Lehmann, J.M. (1997) Fatty Acids and Eicosanoids Regulate Gene Expression Through Direct Interactions with Peroxisome Proliferator-Activated Receptors α and γ, Proc. Natl. Acad. Sci. USA 94, 4318–4321.

    Article  PubMed  CAS  Google Scholar 

  17. Spydevold, Ø., and Bremer, J. (1989) Induction of Peroxisomal β-Oxidation in 7800 C1 Morris Hepatoma Cells in Steady State by Fatty Acids and Fatty Acid Analogues, Biochim. Biophys. Acta 1003, 72–79.

    PubMed  CAS  Google Scholar 

  18. Kawaguchi, A., Tsubotani, S., Seyama, Y., Yamakawa, T., Osumi, T., Hashimoto, T., Ando, M., and Okuda, S. (1980) Stereochemistry of Dehydrogenation Catalyzed by Acyl-CoA Oxidase, J. Biochem. 88, 1481–1486.

    PubMed  CAS  Google Scholar 

  19. Deduve, C., Pressmann, B.C., Gianetto, R., Wattiaux, R., and Applemans, F. (1955) Intracellular Distribution Patterns of Enzymes in Rat Liver Tissue, Biochem. J. 60, 604–617.

    CAS  Google Scholar 

  20. Garras, A., Asiedu, D.K., and Berge, R.K. (1995) Subcellular Localisation and Induction of NADH-Sensitive Acetyl-CoA Hydrolase and Propionyl-CoA Hydrolase Activities in Rat Liver Under Lipogenic Conditions After Treatment with Sulfur-Substituted Fatty Acids, Biochim. Biophys. Acta 1255, 154–160.

    PubMed  Google Scholar 

  21. Willumsen, N., Hexeberg, S., Skorve, J., Lundquist, M., and Berge, R.K. (1993) Docosahexaenoic Acid Shows No Triglyceride-Lowering Effects but Increases the Peroxisomal Fatty Acid Oxidation in Liver of Rats, J. Lipid. Res. 34, 13–22.

    PubMed  CAS  Google Scholar 

  22. Bremer, J. (1981) The Effect of Fasting on the Activity of Liver Carnitine Palmitoyltransferase and Its Inhibition by Malonyl-CoA, Biochim. Biophys. Acta 665, 628–631.

    PubMed  CAS  Google Scholar 

  23. Demoz, A., and Netteland, B., (1993) Separation and Detection of Tissue CoASH and Long-Chain Acyl-CoA by Reversed-Phase High-Performance Liquid Chromatography After Precolumn Derivatisation with Monobromobimane, J. Chromatogr. 635, 251–256.

    Article  CAS  Google Scholar 

  24. Frøyland, L., Madsen, L., Sjursen, W., Garras, A., Lie, Ø., Songstad, J., Rustan, A.C., and Berge, R.K. (1997) Effect of 3-Thia Fatty Acids on the Lipid Composition of Rat Liver, Lipoproteins, and Heart, J. Lipid Res. 38, 1522–1534.

    PubMed  Google Scholar 

  25. Christiansen, E.N., and Davies, E.J. (1978) Measurement of Acid Soluble Products as Indicator of Mitochondrial β-Oxidation, Biochim. Biophys. Acta 502, 17–28.

    Article  PubMed  CAS  Google Scholar 

  26. Chomczynski, P., and Sacchi, N. (1987) Single-Step Method of RNA Isolation by Acid Guanidinium Thiocyanate-Phenol-Chloroform Extraction, Anal. Biochem. 162, 156–159.

    Article  PubMed  CAS  Google Scholar 

  27. Sambrook, J., Fritsch, E., and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, New York.

    Google Scholar 

  28. Feinberg, A., and Vogelstein, P. (1983) A Technique for Radiolabeling DNA Restriction Fragments to High Specific Activity, Anal. Biochem. 132, 6–13.

    Article  PubMed  CAS  Google Scholar 

  29. Skorve, J., Rosendal, J., Vaagenes, H., Knudsen, J., Lillehaug, J.R., and Berge, R.K. (1995) Fatty Acyl-CoA Oxidase Activity Is Induced Before Long-Chain Acyl-CoA Hydrolase Activity and Acyl-CoA Binding Protein in Liver of Rat Treated with Peroxisome Proliferating 3-Thia Fatty Acids, Xenobiotica 25, 1181–1194.

    Article  PubMed  CAS  Google Scholar 

  30. Madsen, L., Frøyland, L., Dyrøy, E., Helland, K., and Berge, R.K. (1998) Docosahexaenoic- and Eicosapentaenoic Acids Are Differently Metabolized in Rat Liver During Mitochondria- and Peroxisome Proliferation, J. Lipid Res. 39, 583–593.

    PubMed  CAS  Google Scholar 

  31. Mannaerts, G.P., Debeer, L.J., Thomas, J., and Deshepper, P.J., (1979) Mitochondrial and Peroxisomal Fatty Acid Oxidation in Liver Homogenates and Isolated Hepatocytes from Control and Clofibrate Treated Rats, J. Biol. Chem. 254, 4585–4595.

    PubMed  CAS  Google Scholar 

  32. Markwell, M.A., McGroarty, E.J., Bieber, L.L., and Tolbert, N.E. (1973) The Subcellular Distribution of Carnitine Acyltransferases in Mammalian Liver and Kidney. A New Peroxisomal Enzyme, J. Biol. Chem. 248, 3426–3432.

    PubMed  CAS  Google Scholar 

  33. Sleboda, J., Pourfarzam, M., Bartlett, K., and Osmundsen, H. (1995) Effects of Added 1-Carnitine, Acetyl-CoA and CoA on Peroxisomal Beta-Oxidation of [U-14C]Hexadecanoate by Isolated Peroxisomal Fractions, Biochim Biophys Acta. 1258, 309–318.

    PubMed  Google Scholar 

  34. McGarry, J.D., and Foster, D.W. (1974) The Metabolism of (−)-Octanoylcarnitine in Perfused Livers from Fed and Fasted Rats, J. Biol. Chem. 249, 7984–7990.

    PubMed  CAS  Google Scholar 

  35. McGarry, J.D., Wright, P.H., and Foster, D.W. (1975) Rapid Activation of Hepatic Ketogenetic Capacity in Fed Rats by Anti-Insulin Serum and Glucagon, J. Clin. Invest. 55, 1202–1209.

    Article  PubMed  CAS  Google Scholar 

  36. Aoyama, T., Peters, J.M., Iritani, N., Nakajima, T., Furihata, K., Hashimoto, T., and Gonzalez, F.J. (1998) Altered Constitutive Expression of Fatty Acid-Metabolizing Enzymes in Mice Lacking the Peroxisome Proliferator-Activated Receptor α (PPARα), J. Biol. Chem. 273, 5678–5684.

    Article  PubMed  CAS  Google Scholar 

  37. Verhoeven, N.M., Roe, D.S., Kok, R.M., Wanders, R.J.A., Jacobs, C., and Roe, C.R. (1998) Phytanic Acid and Pristanic Acid Are Oxidized by Sequential Peroxisomal and Mitochondrial Reactions in Cultured Fibroblasts, J. Lipid Res. 39, 66–74.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lise Madsen.

About this article

Cite this article

Madsen, L., Berge, R.K. 3-thia fatty acid treatment, in contrast to eicosapentaenoic acid and starvation, induces gene expression of carnitine palmitoyltransferase-II in rat liver. Lipids 34, 447–456 (1999). https://doi.org/10.1007/s11745-999-0384-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-999-0384-6

Keywords

Navigation