Skip to main content
Log in

Metabolic profile of linoleic acid in stored apples: Formation of 13(R)-hydroxy-9(Z),11(E)-octadecadienoic acid

  • Published:
Lipids

Abstract

During our ongoing project on the biosynthesis of R-(+)-octane-1,3-diol the metabolism of linoleic acid was investigated in stored apples after injection of [1-14C]-, [9,10,12,13-3H]-, 13C18- and unlabeled substrates. After different incubation periods the products were analyzed by gas chromatography-mass spectroscopy (MS), high-performance liquid chromatography-MS/MS, and HPLC-radiodetection. Water-soluble compounds and CO2 were the major products whereas 13(R)-hydroxy- and 13-keto-9(Z),11(E)-octadecadienoic acid, 9(S)-hydroxy-and 9-keto-10(E),12(Z)-octadecadienoic acid, and the stereoisomers of the 9,10,13- and 9,12,13-trihydroxyoctadecenoic acids were identified as the major metabolites found in the diethyl ether extracts. Hydroperoxides were not detected. The ratio of 9/13-hydroxy- and 9/13-keto-octadecadienoic acid was 1∶4 and 1∶10, respectively. Chiral phase HPLC of the methyl ester derivatives showed enantiomeric excesses of 75% (R) and 65% (S) for 13-hydroxy-9(Z),11(E)-octadecadienoic acid and 9-hydroxy-10(E),12(Z)-octadecadienoic acid, respectively. Enzymatically active homogenates from apples were able to convert unlabeled linoleic acid into the metabolites. Radiotracer experiments showed that the transformation products of linoleic acid were converted into (R)-octane-1,3-diol. 13(R)-Hydroxy-9(Z), 11(E)-octadecadienoic acid is probably formed in stored apples from 13-hydroperoxy-9(Z),11(E)-octadecadienoic acid. It is possible that the S-enantiomer of the hydroperoxide is primarily degraded by enzymatic side reactions, resulting in an enrichment of the R-enantiomer and thus leading to the formation of 13(R)-hydroxy-9(Z),11(E)-octadecadienoic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ELSD:

Evaporative light scattering detector

GC-MS:

capillary gas chromatography-mass spectrometry

HODE:

hydroxy-octadecadienoic acid

HILC:

high-performance liquid chromatography

HPLC-MS/MS:

HPLC-tandem mass spectrometry

HPOD:

hydroperoxyoctadecadienoic acid

KODE:

keto-octadecadienoic acid

LC:

liquid chromatography

LOX:

lipoxygenase

RP18:

octadecy reversed phase

TLC:

thin-layer chromatography

UV:

ultraviolet

References

  1. Paillard, N.M.M. (1990) The Flavour of Apples, Pears and Quinces, in Food Flavours Part C. The Flavour of Fruits (Morton, I.D., and MacLeod, A.J., eds.) pp. 1–42, Elsevier, Amsterdam.

    Google Scholar 

  2. Beuerle, T., and Schwab, W. (1997) Biosynthesis of Octane-1,3-diol in Apple Fruit, Phytochemistry 45, 1153–1155.

    Article  CAS  Google Scholar 

  3. Galliard, T. (1968) Aspects of Lipid Metabolism in Higher Plants—II. The Identification and Quantitative Analysis of Lipids from the Pulp of Pre-and Post-Climacteric Apples, Phytochemistry 7, 1915–1922.

    Article  CAS  Google Scholar 

  4. Bartley, I. (1985) Lipid Metabolism of Ripening Apples, Phytochemistry 24, 2857–2859.

    Article  CAS  Google Scholar 

  5. Mazliak, P. (1969) Le Metabolisme des Lipides au Cours de la Maturation des Pommes, Qual. Plant Mater. 19, 19–53.

    Article  CAS  Google Scholar 

  6. Schreier, P. (1984) Chromatographic Studies of Biogenesis of Plant Volatiles, pp. 56–76, Hüthig, Heidelberg.

    Google Scholar 

  7. Hamberg, M. (1993) Pathways in the Biosynthesis of Oxylipins in Plants, J. Lipid Med. 6, 375–384.

    CAS  Google Scholar 

  8. Caldelari, D., and Farmer, E.E. (1998) A Rapid Assay for the Coupled Cell Free Generation of Oxylipins, Phytochemistry 47, 599–604.

    Article  CAS  Google Scholar 

  9. Farmer, E.E. (1994) Fatty Acid Signaling in Plants and Their Associated Microorganisms, Plant Mol. Biol. 26, 1423–1437.

    Article  PubMed  CAS  Google Scholar 

  10. Hamberg, M., and Samuelsson, B. (1967) On the Specificity of the Oxygenation of Unsaturated Fatty Acids Catalyzed by Soybean Lipoxidase, J. Biol. Chem. 242, 5329–5335.

    PubMed  CAS  Google Scholar 

  11. Schneider, C., Schreier, P., and Herderich, M. (1997) Analysis of Lipoxygenase-Derived Fatty Acid Hydroperoxides by Electrospray Ionization Tandem Mass Spectrometry, Lipids 32, 331–336.

    Article  PubMed  CAS  Google Scholar 

  12. Matthew, J.A., Chan, H.W.S., and Galliard, T. (1977) A Simple Method for the Preparation of Pure 9-d-Hydroperoxide of Linoleic Acid and Methyl Linoleate Based on the Positional Specificity of Lipoxygenase in Tomato Fruit, Lipids 12, 324–326.

    PubMed  CAS  Google Scholar 

  13. Wu, Z., Robinson, D.S., Domoney, C., and Casey, R. (1995) High-Performance Liquid Chromatographic Analysis of Linoleic Acid Oxidation by Pea (Pisum sativum) Seed Lipoxygenases, J. Agric. Food Chem. 43, 337–342.

    Article  CAS  Google Scholar 

  14. Andre, J.C., and Funk, M.O. (1986) Determination of Stereochemistry in the Fatty Acid Hydroperoxide Products of Lipoxygenase Catalysis, Anal. Biochem. 158, 316–321.

    Article  PubMed  CAS  Google Scholar 

  15. Hamberg, M. (1991) Regio-and Stereochemical Analysis of Trihydroxyoctadecenoic Acids from Linoleic Acid 9-and 13-Hydroperoxides, Lipids 26, 407–415.

    CAS  Google Scholar 

  16. Hamberg, M. (1991) Trihydroxyoctadecenoic Acids in Beer: Qualitative and Quantitative Analysis, J. Agric. Food Chem. 39, 1568–1572.

    Article  CAS  Google Scholar 

  17. Hamberg, M., and Gotthammar, B. (1973) A New Reaction of Unsaturated Fatty Acid Hydroperoxides: Formation of 11-Hydroxy-12,13-epoxy-9-octadecenoic Acid from 13-Hydroperoxy-9,11-octadecadienoic Acid, Lipids 8, 737–744.

    CAS  Google Scholar 

  18. Garssen, G.J., Veldink, G.A., Vliegenthart, J.F.G., and Boldingh, J. (1976) The Formation of Threo-11-hydroxy-trans-12∶13-epoxy-9-cis-octadecenoic Acid by Enzymic Isomerization of 13-l-Hydroxy-9-cis, 11-trans-octadecadienoic Acid by Soybean Lipoxygenase-1, Eur. J. Biochem. 62, 33–36.

    Article  PubMed  CAS  Google Scholar 

  19. Gardner, H.W., Kleiman, R., and Weisleder, D. (1974) Homolytic Decomposition of Linoleic Acid Hydroperoxide: Identification of Fatty Acid Products, Lipids 9, 696–706.

    CAS  Google Scholar 

  20. Grosch, W., Laskawy, G., and Fischer, K.H. (1977) Positionsspezifität der Peroxidierung von Linol-und Linolensäure Durch Homogenate aus Äpfeln und Birnen, Z. Lebensm. Unters. Forsch. 163, 203–205.

    Article  PubMed  CAS  Google Scholar 

  21. Kim, I., and Grosch, W. (1979) Partial Purification of a Lipoxygenase from Apples, J. Agric. Food Chem. 27, 243–245.

    Article  PubMed  CAS  Google Scholar 

  22. Feys, M., De-Mot, R., Naesens, W., and Tobback, P. (1982) Solubilization, Partial Purification and Properties of Lipoxygenase (E.C. 1.13.11.12) from Apples, Z. Lebensm. Unters. Forsch. 174, 360–365.

    Article  CAS  Google Scholar 

  23. Van Os, C.P.A., Rijke-Schilder, G.P.M., and Vliegenhart, J.F.G. (1979) 9-l-R-Linoleic Hydroperoxide a Novel Product from the Oxygenation of Linoleic Acid by Type 2 Lipoxygenase EC-1.13.11.12 from Soybeans and Peas (Pisum sativum), Biochim. Biophys. Acta 575, 479–484.

    PubMed  Google Scholar 

  24. Brash, A.R., Boeglin, W.E., Chang, M.S., and Shieh, B.H. (1998) Purification and Molecular Cloning of an 8R-Lipoxygenase from the Coral Plexaura homomolla Reveal the Related Primary Structures of R- and S-Lipoxygenases, J. Biol. Chem. 271, 20949–20957.

    Google Scholar 

  25. Hamberg, M., Su, C., and Oliw, E. (1988) Manganese Lipoxygenase, Discovery of a Bis-allylic Hydroperoxide as Product and Intermediate in a Lipoxygenase Reaction, J. Biol. Chem. 273, 13080–13088.

    Article  Google Scholar 

  26. Oliw, E.H. (1994) Oxygenation of Polyunsaturated Fatty Acids by Cytochrome P450 Monooxygenases, Prog. Lipid Res. 33, 329–354.

    Article  PubMed  CAS  Google Scholar 

  27. Gardner, H.W., Weisleder, D., and Plattner, R.D. (1991) Hydroperoxide Lyase and Other Hydroperoxide-Metabolizing Activity in Tissues of Soybean, Glycine max, Plant Physiol. 97, 1059–1072.

    Article  PubMed  CAS  Google Scholar 

  28. Matoba, T., Hidaka, H., Kitamura, K., Kaizuma, N., and Kito, M. (1985) Contribution of Hydroperoxide Lyase Activity to n-Hexanal Formation in Soybean, J. Agric. Food Chem. 33, 856–858.

    Article  CAS  Google Scholar 

  29. Kajiwara, T., Sekiya, J., Asano, M., and Hatanaka, A. (1982) Enantioselectivity of Enzymatic Cleavage Reaction of 13-Hydroxperoxy-linolenic Acid to C6-Aldehyde and C12-Oxo Acid in Tea Chloroplasts, Agric. Biol. Chem. 46, 3087–3088.

    CAS  Google Scholar 

  30. Hamberg, M. (1975) Decomposition of Unsaturated Fatty Acid Hydroperoxides by Hemoglobin: Structures of Major Products of 13-l-Hydroperoxy-9,11-octadecadienoic Acid, Lipids 10, 87–92.

    PubMed  CAS  Google Scholar 

  31. Claeys, M., Kivits, G.A.A., Christ-Hazelhof, E., and Nugteren, D.H. (1985) Metabolic Profile of Linoleic Acid in Porcine Leukocytes Through the Lipoxygenase Pathway, Biochim. Biophys. Acta 837, 35–51.

    PubMed  CAS  Google Scholar 

  32. Graveland, A. (1970) Enzymatic Oxidations of Linoleic Acid and Glycerol-1-monolinoleate in Doughs and Flour-Water Suspensions, J. Am. Oil Chem. Soc. 47, 352–361.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilfried Schwab.

About this article

Cite this article

Beuerle, T., Schwab, W. Metabolic profile of linoleic acid in stored apples: Formation of 13(R)-hydroxy-9(Z),11(E)-octadecadienoic acid. Lipids 34, 375–380 (1999). https://doi.org/10.1007/s11745-999-0375-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-999-0375-7

Keywords

Navigation