Skip to main content
Log in

Low density lipoprotein of synovial fluid in inflammatory joint disease is mildly oxidized

  • Published:
Lipids

Abstract

Oxidatively modified low density lipoprotein (LDL) has many biological activities which could contribute to the pathology of the atherosclerotic lesion. Because atherosclerosis has an inflammatory component, there has been much interest in the extent to which LDL could be oxidatively modified in vivo by inflammation. The present study examined LDL present in an accessible inflammatory site, the inflamed synovial joint, for evidence of compositional change and oxidative modification. LDL was isolated from knee joint synovial fluid (SF) from subjects with inflammatory arthropathies and also from matched plasma samples. SF and plasma LDL had similar free cholesterol and α-tocopherol content, but SF LDL had a lower content of esterified cholesterol. On electrophoresis, SF LDL was slightly more electronegative than LDL from matched plasma samples, but the changes were much less than those resulting from Cu2+-treatment of LDL. Oxidized cholesterol was not detected in any samples, but cholesterol ester hydroperoxide levels were greater in SF than in plasma LDL. When samples from three subjects were incubated with macrophages, the SF LDL did not cause significant loading of the cells with cholesterol or cholesterol esters, in contrast to the situation with acetylated LDL. Overall, the SF LDL displayed evidence of slightly increased oxidation by comparison with matched plasma samples. Despite their isolation from an environment with active inflammation, changes were modest compared with those resulting from Cu2+ treatment. Thus, extensive LDL oxidation is not a necessary correlate of location in a chronic inflammatory site, even though it is characteristic of atherosclerotic lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DOPA:

3,4-dihydroxyphenylalanine

HDL:

high density lipoprotein

HPLC:

high-performance liquid chromatography

LDL:

low density lipoprotein

RA:

rheumatoid arthritis

SF:

synovial fluid

References

  1. Navab, M., Imes, S.S., Hama, S.Y., Hough, G.P., Ross, L.A., Bork, R.W., Valente, A.J., Berliner, J.A., Drinkwater, D.C., Laks, H., and Fogelman, A.M. (1991) Monocyte Transmigration Induced by Modification of Low Density Lipoprotein in Cocultures of Human Aortic Wall Cells Is Due to Induction of Monocyte Chemotactic Protein 1 Synthesis and Is Abolished by High Density Lipoprotein, J. Clin. Invest. 88, 2039–2046.

    PubMed  CAS  Google Scholar 

  2. Witztum, J.L., and Steinberg, D. (1991) Role of Oxidised Low Density Lipoprotein in Atherogenesis, J. Clin. Invest. 88, 1785–1792.

    PubMed  CAS  Google Scholar 

  3. Morel, D.W., DiCorleto, P.E., and Chisolm, G.M. (1984) Endothelial and Smooth Muscle Cells Alter Low Density Lipoprotein in vitro by Free Radical Oxidation, Arteriosclerosis 4, 357–364.

    PubMed  CAS  Google Scholar 

  4. Frostegard, J., Wu, R.H., Giscombe, R., Holm, G., Lefvert, A.K., and Nilsson, J. (1992) Induction of T-Cell Activation by Oxidised Low Density Lipoprotein, Arterioscler. Thromb. 12, 461–467.

    PubMed  CAS  Google Scholar 

  5. Endermann, G., Staunton, L.W., Madden, K.S., Bryant, C.M., White, R.T., and Protter, A.A. (1993) CD36 Is a Receptor for Oxidized Low Density Lipoprotein, J. Biol. Chem. 268, 11811–11816.

    Google Scholar 

  6. Jessup, W., Mander, E.L., and Dean, R.T. (1992) The Intracellular Storage and Turnover of Apolipoprotein B of Oxidised LDL in Macrophages, Biochim. Biophys. Acta 1126, 167–177.

    PubMed  CAS  Google Scholar 

  7. Lehr, H.A., Hubner, C., Finckh, B., Angermuller, S., Nolte, D., Beisiegel, U., Kohlschutter, A., and Messmer, K. (1991) Role of Leukotrienes in Leukocyte Adhesion Following Systemic Administration of Oxidatively Modified Low Density Lipoprotein in Hamsters, J. Clin. Invest. 88, 9–14.

    PubMed  CAS  Google Scholar 

  8. Frostegard, J., Kjellman, B., Gidlund, M., Andersson, B., Jindal, S., and Kiessling, R. (1996) Induction of Heat Shock Protein in Monocytic Cells by Oxidised Low Density Lipoprotein, Atherosclerosis. 121, 93–103.

    Article  PubMed  CAS  Google Scholar 

  9. Frostegard, J., Nilsson, J., Haegerstrand, A., Hamsten, A., Wigzell, H., and Gidlund, M. (1990) Oxidized Low Density Lipoprotein Induces Differentiation and Adhesion of Normal Monocytes and Monocytic Cell Line U937, Proc. Natl. Acad. Sci. USA 87, 904–908.

    Article  PubMed  CAS  Google Scholar 

  10. Jessup, W., Rankin, S.M., DeWhalley, C.V., Hoult, J.R.S., Scott, J., and Leake, D.S. (1990) Alpha-Tocopherol Consumption During Low-Density-Lipoprotein Oxidation, Biochem. J. 265, 399–405.

    PubMed  CAS  Google Scholar 

  11. Katsura, M., Forster, L.A., Ferns, G.A.A., and Anggard, E.A. (1994) Oxidative Modification of Low-Density Lipoprotein by Human Polymorphonuclear Leucocytes to a Form Recognised by the Lipoprotein Scavenger Pathway, Biochim. Biophys. Acta 1213, 231–237.

    PubMed  CAS  Google Scholar 

  12. Winyard, P.G., Tatzber, F., Esterbauer, H., Kus, M.L., Blake, D.R., and Morris, C.J. (1993) Presence of Foam Cells Containing Oxidised Low Density Lipoprotein in the Synovial Membrane from Patients with Rheumatoid Arthritis, Ann. Rheum. Dis. 52, 677–680.

    Article  PubMed  CAS  Google Scholar 

  13. Suarna, C., Dean, R.T., May, J., and Stocker, R. (1995) Human Atherosclerotic Plaque Contains Both Oxidized Lipids and Relatively Large Amounts of Alpha-Tocopherol and Ascorbate, Arterioscler. Thromb. Vasc. Biol. 15, 1616–1624.

    PubMed  CAS  Google Scholar 

  14. Leeuwenburgh, C., Rasmussen, J.E., Hsu, F.F., Mueller, D.M., Pennathur, S., and Heinecke, J.W. (1997) Mass Spectrometric Quantification of Markers for Protein Oxidation by Tyrosyl Radical, Copper and Hydroxyl Radical in Low Density Lipoprotein Isolated from Human Atherosclerotic Plaque, J. Biol. Chem. 272, 3520–3526.

    Article  PubMed  CAS  Google Scholar 

  15. Blake, D.R., Merry, P., Unsworth, J., Kidd, B.L., Outhwaite, J.M., Ballard, R., Morris, C.J., Gray, L., and Lunec, J. (1989) Hypoxic-Reperfusion Injury in the Inflamed Human Joint, Lancet 1, 289–293.

    Article  PubMed  CAS  Google Scholar 

  16. Merry, P., Grootveld, M., Lunec, J., and Blake, D.R. (1991) Oxidative Damage to Lipids Within the Inflamed Human Joint Provides Evidence of Radical-Mediated Hypoxic-Reperfusion Injury, Am. J. Clin. Nutr. 53, 362s-369s.

    PubMed  CAS  Google Scholar 

  17. Kritharides, L., Jessup, W., Gifford, J., and Dean, R.T. (1993) A Method for Defining the Stages of Low Density Lipoprotein Oxidation by the Separation of Cholesterol and Cholesterol-Ester Oxidation Products Using HPLC, Analyt. Biochem. 213, 79–89.

    Article  PubMed  CAS  Google Scholar 

  18. Stocker, R., Bowry, V.W., and Frei, B. (1991) Ubiquinol-10 Protects Low Density Lipoprotein More Efficiently Against Lipid Peroxidation Than Does Alpha-Tocopherol, Proc. Natl. Acad. Sci. USA 88, 1646–1650.

    Article  PubMed  CAS  Google Scholar 

  19. Fu, S., Hick, L.A., Sheil, M.M., and Dean, R.T. (1995) Structural Identification of Valine Hydroperoxides and Hydroxides on Radical-Damaged Amino Acid, Peptide, and Protein Molecules, Free Radic. Biol. Med. 19, 281–292.

    Article  PubMed  CAS  Google Scholar 

  20. Gieseg, S.P., Simpson, J.A., Charlton, T.S., Duncan, M.W., and Dean, R.T. (1993) Protein-Bound 3,4-Dihydroxyphenylalanine Is a Major Reductant Formed During Hydroxyl Radical Damage to Proteins, Biochemistry 32, 4780–4786.

    Article  PubMed  CAS  Google Scholar 

  21. Malle, E., Hazell, L., Stocker, R., Sattler, W., Esterbauer, H., and Waeg, G. (1995) Immunologic Detection and Measurement of Hypochlorite-Modified LDL With Specific Monoclonal Antibodies, Arterioscler. Thromb. Vasc. Biol. 15, 982–989.

    PubMed  CAS  Google Scholar 

  22. Wardlaw, A.C. (1988) Practical Statistics for Experimental Biologists, p. 280, John Wiley & Sons, Chichester.

    Google Scholar 

  23. Brown, A.J., Dean, R.T., and Jessup, W. (1996) Free and Esterified Oxysterol: Formation During Copper-Oxidation of Low-Density Lipoprotein and Uptake by Mouse Macrophages, J. Lipid Res. 37, 320–335.

    PubMed  CAS  Google Scholar 

  24. Steinbrecher, U.P., and Lougheed, M. (1992) Scavenger-Receptor Independent Stimulation of Cholesterol Esterification in Macrophages by Low Density Lipoprotein Extracted from Aortic Intima, Arterioscler. Thromb. 12, 609–625.

    Google Scholar 

  25. Smith, E.B., and Ashall, C. (1983) Variability in Electrophoretic Mobility of Low Density Lipoprotein. Comparison of Interstitial Fluid from Human Aortic Intima and Serum, Atherosclerosis 49, 89–98.

    Article  PubMed  CAS  Google Scholar 

  26. Dean, R.T., Fu, S., Stocker, R., and Davies, M.J. (1997) Biochemistry and Pathology of Radical-Mediated Protein Oxidation, Biochem. J. 324, 1–18.

    PubMed  CAS  Google Scholar 

  27. Steinbrecher, U.P., Parthasarathy, S., Leake, D.S., Witztum, J.L., and Steinberg, D. (1984) Modification of Low Density Lipoprotein by Endothelial Cells Involves Lipid Peroxidation and Degradation of Low Density Lipoprotein Phospholipids, Proc. Natl. Acad. Sci. USA 81, 3883–3887.

    Article  PubMed  CAS  Google Scholar 

  28. Kritharides, L., Jessup, W., and Dean, R.T. (1995) EDTA Differentially and Incompletely Inhibits Components of Prolonged Cell-Mediated Oxidation of Low-Density Lipoproteins, Free Radical Res. 22, 399–417.

    CAS  Google Scholar 

  29. Leake, D.S., and Rankin, S.M. (1990) The Oxidative Modification of Low-Density Lipoproteins by Macrophages, Biochem. J. 270, 741–748.

    PubMed  CAS  Google Scholar 

  30. Watson, A.D., Berliner, J.A., Hama, S.Y., La-Du, B.N., Faull, K.F., Fogelman, A.M., and Navab, M. (1995) Protective Effect of High Density Lipoprotein Associated Paraoxonase. Inhibition of the Biological Activity of Minimally Oxidized Low Density Lipoprotein, J. Clin. Invest. 96, 2882–2891.

    PubMed  CAS  Google Scholar 

  31. Christison, J.K., Rye, K.A., and Stocker, R. (1995) Exchange of Oxidized Cholesteryl Linoleate Between LDL and HDL Mediated by Cholesteryl Ester Transfer Protein, J. Lipid. Res. 36, 2017–2026.

    PubMed  CAS  Google Scholar 

  32. Trentham, D.E., Hamm, R.L., and Masi, A.T. (1975) Wrist Arthrography: Review and Comparison of Normals, Rheumatoid Arthritis and Gout Patients, Semin. Arthritis Rheum. 5, 105–120.

    Article  PubMed  CAS  Google Scholar 

  33. Wallis, W.J., Simkin, P.A., and Nelp, W.B. (1987) Protein Traffic in Human Synovial Effusions, Arthritis Rheum. 30, 57–63.

    PubMed  CAS  Google Scholar 

  34. Wallis, W.J., Simkin, P.A., Nelp, W.B., and Foster, D.M. (1985) Intraarticular Volume and Clearance in Human Syovial Effusions, Arthritis Rheum. 28, 441–449.

    PubMed  CAS  Google Scholar 

  35. Daugherty, A., Dunn, J.L., Rateri, D.L., and Heinecke, J.W. (1994) Myeloperoxidase, A Catalyst for Lipoprotein Oxidation, Is Expressed in Human Atherosclerotic Lesions, J. Clin. Invest. 94, 437–444.

    PubMed  CAS  Google Scholar 

  36. Edwards, S.W., Hughes, V., Barlow, J., and Bucknall, R. (1988) Immunological Detection of Immunoperoxidase in Synovial Fluid from Patients With Rheumatoid Arthritis, Biochem. J. 250, 81–85.

    PubMed  CAS  Google Scholar 

  37. Hazell, L.J., and Stocker, R. (1993) Oxidation of Low-Density Lipoprotein with Hypochloride Causes Transformation of the Lipoprotein into a High-Uptake Form for Macrophages, Biochem. J. 290, 165–172.

    PubMed  CAS  Google Scholar 

  38. Dularay, B., Yea, C.M., and Elson, C.J. (1991) Inhibition of Myeloperoxidase by Synovial Fluid and Serum, Ann. Rheum. Dis. 50, 383–388.

    PubMed  CAS  Google Scholar 

  39. Jonasson, L., Holm, J., Skalli, O., Bondjers, G., and Hansson, G.K. (1986) Regional Accumulations of T Cells, Macrophages, and Smooth Muscle Cells in the Human Atherosclerotic Plaque, Arteriosclerosis 6, 131.

    PubMed  CAS  Google Scholar 

  40. Stemme, S., Holm, J., and Hansson, G.K. (1992) T Lymphocytes in Human Atherosclerotic Plaques Are Memory Cells Expressing CD45RO and the Integrin VLA-1, Arterioscler. Thromb. 12, 206–211.

    PubMed  CAS  Google Scholar 

  41. Gerrity, R.G., Naito, H.K., Richardson, M., and Schwartz, C.J. (1979) Dietary Induced Atherogenesis in the Swine: Morphology of the Intima in Pre-lesion Stages, Am. J. Pathol. 95, 775–786.

    PubMed  CAS  Google Scholar 

  42. Ross, R. (1993) The Pathogenesis of Atherosclerosis: A Perspective for the 1990s, Nature 362, 801–809.

    Article  PubMed  CAS  Google Scholar 

  43. Alexander, R.W. (1994) Inflammation and Coronary Artery Disease, N. Engl. J. Med. 331, 468–469.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. James.

About this article

Cite this article

James, M.J., van Reyk, D., Rye, K.A. et al. Low density lipoprotein of synovial fluid in inflammatory joint disease is mildly oxidized. Lipids 33, 1115–1121 (1998). https://doi.org/10.1007/s11745-998-0313-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-998-0313-8

Keywords

Navigation