Skip to main content
Log in

Different degrees of moderate iron deficiency modulate lipid metabolism of rats

  • Published:
Lipids

Abstract

Severe iron deficiency affects lipid metabolism. To investigate whether moderate iron depletion also alters lipid variables—including lipid levels in serum and liver, hepatic lipogenesis, and fatty acid composition indicative of an impaired desaturation—we carried out experiments with rats fed 9, 13, and 18 mg iron/kg diet over a total of 5 wk. The study also included three pair-fed control groups and an ad libitum control group, fed with 50 mg iron/kg diet. The iron-depleted rats were classified as iron-deficient on the basis of reduced serum iron, hemoglobin concentration, and hematocrit. All moderately iron-deficient rats had significantly lower cholesterol concentrations in liver and serum lipoproteins than their pair-fed controls. Rats with the lowest dietary iron supply had higher concentrations of hepatic phosphatidylcholine (PC) and phosphatidylethanolamine (PE), lower activities of glucose-6-phosphate dehydrogenase, malic enzyme and fatty acid synthase, and higher triacylglycerol concentrations in serum lipoproteins than the corresponding pair-fed control rats. Moderate iron deficiency also depressed the serum phospholipid level. Moreover, several consistent significant differences in fatty acid composition of hepatic PC and PE occurred within moderate iron deficiency, which indicate impaired desaturation by Δ-9 and Δ-6 desaturases of saturated and essential fatty acids. We conclude that lipid variables, including cholesterol in liver and serum lipoproteins as well as fatty acid desaturation, reflect the gradations of iron status best and can be used as an indicator of the degree of moderate iron deficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

HDL:

high density lipoprotein

PC:

phosphatidylcholine

PE:

phosphatidylethanolamine (diacyl)

VLDL:

very low density lipoprotein

References

  1. Guthrie, H.A., Froozani, M., Sherman, A.R., and Barron, G.P. (1974) Hyperlipidemia in Offspring of Iron-Deficient Rats, J. Nutr. 104, 1273–1278.

    PubMed  CAS  Google Scholar 

  2. Amine, E.K., Desilets, E.J., and Hegsted, D.M. (1976) Effect of Dietary Fats on Lipogenesis in Iron Deficiency Anemic Chicks and Rats, J. Nutr. 106, 405–411.

    CAS  Google Scholar 

  3. Sherman, A.R., Guthrie, H.A., Wolinsky, I., and Zulak, I.M. (1978) Iron Deficiency Hyperlipidemia in 18-Day-Old Rat Pups: Effects of Milk Lipids, Lipoprotein Lipase and Triglyceride Synthesis, J. Nutr. 108, 152–162.

    PubMed  CAS  Google Scholar 

  4. Rao, G.A., Manix, M., and Larkin, E.C. (1980) Reduction of Essential Fatty Acid Deficiency in Rats Fed a Low Iron Fat Free Diet, Lipids 15, 55–60.

    PubMed  CAS  Google Scholar 

  5. Cunnane, S.C., and McAdoo, K.R. (1987) Iron Intake Influences Essential Fatty Acid and Lipid Composition of Rat Plasma and Erythrocytes, J. Nutr. 117, 1514–1519.

    PubMed  CAS  Google Scholar 

  6. Johnson, S.B., Kramer, T.R., Briske-Anderson, M., and Holman, R.T. (1989) Fatty Acid Pattern of Tissue Phospholipids in Copper and Iron Deficiencies, Lipids 24, 141–145.

    PubMed  CAS  Google Scholar 

  7. Eder, K., Kirchgessner, M., and Kralik, A. (1996) The Effect of Trace Element Deficiency (iron, copper, zinc, manganese and selenium) on Hepatic Fatty Acid Composition in the Rat, Trace Elem. Electrol. 13, 1–6.

    CAS  Google Scholar 

  8. Sherman, A.R. (1978) Lipogenesis in Iron-Deficient Adult Rats, Lipids 13, 473–478.

    PubMed  CAS  Google Scholar 

  9. Reeves, P.G., Nielsen, F.H., and Fahey, G.C., Jr. (1993) AIN-93 Purified Diets for Laboratory Rodents: Final Report of the American Institute of Nutrition Ad Hoc Writing Committee on the Reformulation of the AIN-76A Rodent Diet, J. Nutr. 123, 1939–1951.

    PubMed  CAS  Google Scholar 

  10. National Research Council (1985) Guide for the Care and Use of Laboratory Animals, Publication No. 85-23 (rev.), National Institutes of Health, Bethesda.

    Google Scholar 

  11. Hara, A., and Radin, N.S. (1978) Lipid Extraction of Tissues with a Low-Toxicity Solvent, Anal. Biochem. 90, 420–426.

    Article  PubMed  CAS  Google Scholar 

  12. Eder, K., Reichlmayr-Lais, A.M., and Kirchgessner, M. (1992) Simultaneous Determination of Amounts of Major Phospholipid Classes and Their Fatty Acid Composition Using High-Performance Liquid Chromatography and Gas Chromatography, J. Chromatogr. 598, 33–42.

    Article  PubMed  CAS  Google Scholar 

  13. Morrison, W.R., and Smith, L.M. (1964) Preparation of Fatty Acid Methyl Esters and Dimethylacetals from Lipids with Boron Fluoride-Methanol, J. Lipid Res. 5, 600–608.

    PubMed  CAS  Google Scholar 

  14. Eder, K., and Kirchgessner, M. (1996) The Effect of Dietary Fat on Activities of Lipogenic Enzymes in Liver and Adipose Tissue of Zinc-Adequate and Zinc-Deficient Rats, J. Nutr. Biochem. 7, 190–195.

    Article  CAS  Google Scholar 

  15. Eder, K., Reichlmayr-Lais, A.M., and Kirchgessner, M. (1991) Gas Chromatographic Analysis of Fatty Acid Methyl Esters: Avoiding Discrimination by Programmed Temperature Vaporizing Injection, J. Chromatogr. 588, 265–272.

    Article  CAS  Google Scholar 

  16. De Hoff, J.L., Davidson, L.H., and Kritchevsky, V. (1978) An Enzymatic Assay for Determining Free and Total Cholesterol in Tissue, Clin. Chem. 24, 433–453.

    PubMed  Google Scholar 

  17. Deutsch, J. (1983) Glucose-6-Phosphate Dehydrogenase, in Methods of Enzymatic Analysis (Bergmeyer, H.U., ed.) Vol. 3, pp. 190–197, Verlag Chemie, Weinheim.

    Google Scholar 

  18. Horecker, B.L., and Smyrniotis, P.Z. (1955) 6-Phosphogluconic Dehydrogenase, Methods Enzymol. 1, 323–327.

    Google Scholar 

  19. Hsu, R.Y., and Lardy, H.A. (1969) Malic Enzyme, Methods Enzymol. 8, 230–235.

    Google Scholar 

  20. Roncari, D.A.K. (1981) Fatty Acid Synthase from Human Liver, Methods Enzymol. 71, 73–78.

    Article  PubMed  CAS  Google Scholar 

  21. Takeda, Y., Suzuki, F., and Inoue, H. (1969) ATP Citrate Lyase (Citrate-Cleavage Enzyme), Methods Enzymol. 13, 259–264.

    Google Scholar 

  22. Kupke, I.R., and Wörz-Zeugner, S. (1986) Sequential Microultracentrifugation of Lipoproteins in 100 μL of Serum, J. Lipid Res. 27, 988–995.

    PubMed  CAS  Google Scholar 

  23. Terpstra, A.H.M., Woodward, C.J.H., and Sanchez-Muniz, F.J. (1981) Improved Techniques for the Separation of Serum Lipoproteins by Density Gradient Ultracentrifugation: Visualization by Prestaining and Rapid Separation of Serum Lipoproteins from Small Volumes of Serum, Anal. Biochem. 111, 149–157.

    Article  PubMed  CAS  Google Scholar 

  24. Sochor, M., Baquer, N.Z., and McLean, P. (1982) Bio-Inorganic Regulation of Pathways of Carbohydrate and Lipid Metabolism II. The Effect of Iron-Deficiency on the Profile of Enzymes in the Developing Rat Adrenal Gland, Enzyme 27, 149–155.

    PubMed  CAS  Google Scholar 

  25. Amine, E.K., and Hegsted, D.M. (1971) Iron Deficiency Lipemia in the Rat and Chick, J. Nutr. 101, 1575–1582.

    PubMed  CAS  Google Scholar 

  26. Lewis, M., and Iammarino, M. (1971) Lipemia in Rodent Iron-Deficiency Anemia, J. Lab. Clin. Med. 78, 546–554.

    PubMed  CAS  Google Scholar 

  27. Sherman, A.R. (1979) Serum Lipids in Suckling and Post-Weanling Iron-Deficient Rats, Lipids 14, 888–892.

    PubMed  CAS  Google Scholar 

  28. Rao, G.A., Crane, R.T., and Larkin, E.C. (1983) Reduced Plasma Lecithin Cholesterol Acyl Transferase Activity in Rats Fed Iron Deficient Diets, Lipids 18, 673–676.

    PubMed  CAS  Google Scholar 

  29. Goodman, J.R., Warshaw, J.P., and Dallman, P.R. (1970) Cardiac Hypertrophy in Iron and in Copper Deficiency: The Quantitiative Contribution of Mitochondrial Enlargement, Pediat. Res. 4, 244–256.

    PubMed  CAS  Google Scholar 

  30. Stangl, G.I., and Kirchgessner, M. (1998) Effect of Different Degrees of Moderate Iron Deficiency on the Activities of Tricarboxylic Acid Cycle Enzymes and the Cytochrome Oxidase, and the Iron, Copper, and Zinc Concentrations in Rat Tissues, Z. Ernährungswiss., in press.

  31. Bartholmey, S.J., and Sherman, A.R. (1985) Carnitine Levels in Iron-Deficient Rat Pups, J. Nutr. 115, 138–145.

    PubMed  CAS  Google Scholar 

  32. Dallman, P.R., and Goodman, J.R. (1971) The Effects of Iron-Deficiency on the Hepatoycte: A Biochemical and Ultrastructural Study, J. Cell Biol. 48, 79–90.

    Article  PubMed  CAS  Google Scholar 

  33. Okayasu, T., Nagao, M., Ishibashi, T., and Imai, Y. (1981) Purification and Partial Characterization of Linoleoyl CoA Desaturase from Rat Liver Microsomes, Arch. Biochem. Biophys. 206, 21–42.

    Article  PubMed  CAS  Google Scholar 

  34. Strittmatter, R., Spatz, L., Corcoran, D., Rogers, M.J., Setlow, B., and Redline, R. (1974) Purification and Properties of Rat Liver Microsomal Stearyl Coenzyme Desaturase, Proc. Natl. Acad. Sci. USA 71, 4565–4569.

    Article  PubMed  CAS  Google Scholar 

  35. Hirosue, T., and Hosogai, Y. (1993) Changes of Hepatic Lipid and Fatty Acid Profiles in Rats Administered Iron-Deficient Diet and Ethanol, Food Chem. Toxicol. 31, 651–654.

    Article  PubMed  CAS  Google Scholar 

  36. Larkin, E.C., Jarratt, B.A., and Rao, G.A. (1986) Reduction of Relative Levels of Nervonic to Lignoceric Acid in the Brain of Rat Pups Due to Iron Deficiency, Nutr. Res. 6, 309–317.

    Article  CAS  Google Scholar 

  37. Rao, G.A., Crane, R.T., and Larkin, E.C. (1983) Reduction of Hepatic Stearoyl-CoA Desaturase Activity in Rats Fed Iron-Deficient Diets, Lipids 18, 573–575.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriele I. Stangl.

About this article

Cite this article

Stangl, G.I., Kirchgessner, M. Different degrees of moderate iron deficiency modulate lipid metabolism of rats. Lipids 33, 889–895 (1998). https://doi.org/10.1007/s11745-998-0285-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-998-0285-8

Keywords

Navigation