Skip to main content
Log in

Lipid molecular order in liver mitochondrial outer membranes, and sensitivity of carnitine palmitoyltransferase I to malonyl-CoA

  • Published:
Lipids

Abstract

Mitochondrial outer membranes were prepared from livers of rats that were in the normal fed state, starved for 48 h, or made diabetic by injection of streptozotocin. Membranes were also prepared from starved late-pregnant rats. The latter three conditions have previously been shown to induce varying degrees of desensitization of mitochondrial overt carnitine palmitoyltransferase (CPT I) to malonyl-CoA inhibition. We measured the fluorescence polarization anisotropy of two probes, 1,6-diphenyl-1,3,5-hexatriene (DPH) and 1-(4-trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene-p-toluenesulfonate (TMA-DPH) which, when incorporated into membranes, report on the hydrophobic core and on the peripheral regions of the bilayer, respectively. The corresponding polarization indices (r DPH and r TMA-DPH) were calculated. In membranes of all three conditions characterized by CPT I desensitization to malonyl-CoA, r DPH was decreased, whereas there was no change in r TMA-DPH, indicating that CPT I is sensitive to changes in membrane core, rather than peripheral, lipid order. The major lipid components of the membranes were analyzed. Although significant changes with physiological state were observed, there was no consistent pattern of changes in gross lipid composition accompanying the changes to membrane fluidity and CPT I sensitivity to malonyl-CoA. We conclude that CPT I kinetic characteristics are sensitive to changes in lipid composition that are localized to specific membrane microdomains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CPT I:

the outer-membrane carnitine palmitoyltransferase of mitochondria

DPH:

1,6-diphenyl-1,3,5-hexatriene

PC:

phosphatidylcholine

PE:

phosphatidylethanolamine

PI:

phosphatidylinositol

TMA-DPH:

1-(4-trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene-p-toluene sulfonate

References

  1. Zammit, V.A. (1984) Mechanisms of Regulation of the Partition of Fatty Acids Between Oxidation and Esterification in the Liver, Progr. Lipid Res. 23, 39–67.

    Article  CAS  Google Scholar 

  2. Drynan, L., Quant, P.A., and Zammit, V.A. (1996) Flux Control Exerted by Mitochondrial Outer Membrane Carnitine Palmitoyltransferase over β-Oxidation, Ketogenesis and Tricarboxylic Acid Cycle Activity in Hepatocytes Isolated from Rats in Different Metabolic States, Biochem. J. 318, 767–770.

    PubMed  CAS  Google Scholar 

  3. Krauss, S., Cascalles, C.V., Zammit, V.A., and Quant, P.A. (1996) Flux Control Exerted by Overt Carnitine Palmitoyltransferase over Palmitoyl-CoA Oxidation and Ketogenesis Is Lower in Suckling Than Adult Rats, Biochem. J. 319, 427–433.

    PubMed  CAS  Google Scholar 

  4. McGarry, J., and Foster, D.W. (1980) Regulation of Hepatic Fatty Acid Oxidation and Ketone Body Production, Annu. Rev. Biochem. 49, 395–420.

    Article  PubMed  CAS  Google Scholar 

  5. Zammit, V.A. (1996) Role of Insulin in Hepatic Fatty Acid Partitioning: Emerging Concepts, Biochem. J. 314, 1–14.

    PubMed  CAS  Google Scholar 

  6. Zammit, V.A. (1995) Insulin and the Partitioning of Hepatic Fatty Acid Metabolism, Biochem. Soc. Trans. 23, 506–509.

    PubMed  CAS  Google Scholar 

  7. Moir, A.M.B., and Zammit, V.A. (1990) Changes in the Properties of Cytosolic Acetyl-CoA Carboxylase Studied in Cold-Clamped Liver Samples from Fed, Starved and Starved-Refed Rats, Biochem. J. 272, 511–517.

    PubMed  CAS  Google Scholar 

  8. Cook, G.A., King, M.T., and Veech, R.L. (1978) Ketogenesis and Malonyl Coenzyme A Content of Isolated Rat Hepatocytes, J. Biol. Chem. 253, 2529–2531.

    PubMed  CAS  Google Scholar 

  9. McGarry, J.D., Mannaerts, G.P., and Foster, D.W. (1978) Characteristics of Fatty Acid Oxidation in Rat Liver Homogenates and the Inhibitory Effect of Malonyl-CoA, Biochim. Biophys. Acta 530, 305–313.

    PubMed  CAS  Google Scholar 

  10. Singh, B., Stakkestad, J.A., Bremer, J., and Borrabaek, B. (1984) Determination of Malonyl-Coenzyme A in Rat Heart, Kidney and Liver: A Comparison Between Acetyl-Coenzyme A and Butyryl-Coenzyme A as Fatty Acid Synthase Primers in the Assay Procedure, Anal. Biochem. 138, 107–111.

    Article  PubMed  CAS  Google Scholar 

  11. Drynan, L., Quant, P.A., and Zammit, V.A. (1996) The Role of Changes in the Sensitivity of Hepatic Mitochondrial Overt Carnitine Palmitoyltransferase in Determining the Onset of the Ketosis of Starvation in the Rat, Biochem. J. 317, 791–795.

    PubMed  CAS  Google Scholar 

  12. Cook, G.A., Otto, D.A., and Cornell, N.W. (1980) Differential Inhibition of Ketogenesis by Malonyl-CoA in Mitochondria from Fed and Starved Rats, Biochem. J. 192, 955–958.

    PubMed  CAS  Google Scholar 

  13. Ontko, J.A., and Johns, M.L. (1980) Evaluation of Malonyl-CoA in the Regulation of Long-Chain Fatty Acid Oxidation in the Liver. Evidence for an Unidentified Regulatory Component of the System, Biochem. J. 192, 959–962.

    PubMed  CAS  Google Scholar 

  14. Saggerson, E.D., Carpenter, C.A., and Tselentis, B.S. (1982) Effects of Thyroidectomy and Starvation on the Activity and Properties of Hepatic Carnitine Palmitoyltransferase, Biochem. J. 208, 667–672.

    PubMed  CAS  Google Scholar 

  15. Cook, G.A. (1984) Differences in the Sensitivity of Carnitine Palmitoyltransferase to Inhibition by Malonyl-CoA Are Due to Differences in K i Values, J. Biol. Chem. 259, 12030–12033.

    PubMed  CAS  Google Scholar 

  16. Grantham, B.D., and Zammit, V.A. (1988) Role of Carnitine Palmitoyltransferase I in the Regulation of Hepatic Ketogenesis During the Onset and Reversal of Chronic Diabetes, Biochem. J. 249, 409–414.

    PubMed  CAS  Google Scholar 

  17. Zammit, V.A., and Moir, A.M.B. (1994) Monitoring the Partitioning of Hepatic Fatty Acids in vivo: Keeping Track of Control, Trends Biochem. Sci. 19, 313–317.

    Article  PubMed  CAS  Google Scholar 

  18. Moir, A.M.B., and Zammit, V.A. (1993) Monitoring of Changes in Hepatic Fatty Acid and Glycerolipid Metabolism During the Starved-to-Fed Transition in vivo. Studies on Awake, Unrestrained Rats, Biochem. J. 289, 49–55.

    PubMed  CAS  Google Scholar 

  19. Moir, A.M.B., and Zammit, V.A. (1993) Rapid Switch of Hepatic Fatty Acid Metabolism from Oxidation to Esterification During Diurnal Feeding of Meal-Fed Rats Correlates with Changes in the Properties of Acetyl-CoA Carboxylase, but Not of Carnitine Palmitoyl Transferase I, Biochem. J. 291, 241–246.

    PubMed  CAS  Google Scholar 

  20. Prip-Buus, C., Thumelin, S., Chatelai, F., Pegorier, J.-P., and Girard, J. (1995) Hormonal and Nutritional Control of Liver Fatty Acid Oxidation and Ketogenesis During Development, Biochem. Soc. Trans. 23, 500–506.

    PubMed  CAS  Google Scholar 

  21. Park, E.A., Mynatt, R.L., Cook, G.A., and Kashfi, K. (1995) Insulin Regulates Enzyme Activity, Malonyl-CoA Sensitivity and mRNA Abundance of Hepatic Carnitine Palmitoyltransferase I, Biochem. J. 310, 853–858.

    PubMed  CAS  Google Scholar 

  22. Zammit, V.A. (1994) Regulation of Ketone Body Metabolism: A Cellular Perspective, Diabetes Rev. 2, 132–155.

    Google Scholar 

  23. Kolodziej, M.P., and Zammit, V.A. (1990) Sensitivity of Inhibition of Rat Liver Mitochondrial Outer-Membrane Carnitine Palmitoyltransferase by Malonyl-CoA to Chemical-and Temperature-Induced Changes in Membrane Fluidity, Biochem. J. 272, 421–425.

    PubMed  CAS  Google Scholar 

  24. Mynatt, R.L., Greenshaw, J.J., and Cook, G.A. (1994) Cholate Extracts of Mitochondrial Outer Membranes Increase Inhibition by Malonyl-CoA of Carnitine Palmitoyltransferase I by a Mechanism Involving Phospholipids, Biochem. J. 248, 727–733.

    Google Scholar 

  25. Murthy, M.V., and Pande, S.V. (1987) Some Differences in the Properties of Carnitine Palmitoyltransferase Activities of the Mitochondrial Outer and Inner Membranes, Biochem. J. 248, 727–733.

    PubMed  CAS  Google Scholar 

  26. Fraser, F., Corstorphine, C.G., and Zammit, V.A. (1997) Topology of Carnitine Palmitoyltransferase I in the Mitochondrial Outer Membrane, Biochem. J. 323, 711–718.

    PubMed  CAS  Google Scholar 

  27. Zammit, V.A., Fraser, F., and Corstorphine, C.G. (1997) Regulation of Mitochondrial Outer-Membrane Carnitine Palmitoyltransferase (CPT I): Role of Membrane-Topology, Adv. Enzyme Regul. 37, 295–317.

    Article  PubMed  CAS  Google Scholar 

  28. Kolodziej, M.P., and Zammit, V.A. (1990) Re-evaluation of the Interaction of Malonyl-CoA with the Rat Liver Mitochondrial Carnitine Palmitoyltransferase System by Using Purified Outer Membranes, Biochem. J. 267, 85–90.

    PubMed  CAS  Google Scholar 

  29. Garda, H.A., and Brenner, R.R. (1984) Short-Chain Aliphatic Alcohols Increase Rat-Liver Microsomal Membrane Fluidity and Affect the Activities of Some Microsomal Membrane-Bound Enzymes, Biochim. Biophys. Acta 769, 160–170.

    Article  PubMed  CAS  Google Scholar 

  30. Christie, W.W. (1985) Rapid Separation and Quantification of Lipid Classes by High-Performance Liquid Chromatography and (light-scattering) Detection, J. Lipid Res. 26, 507–512.

    PubMed  CAS  Google Scholar 

  31. Robinson, I.N., and Zammit, V.A. (1982) Sensitivity of Carnitine Acyltransferase I to Malonyl-CoA in Isolated Rat Liver Mitochondria Is Quantitatively Related to Hepatic Malonyl-CoA Concentration, Biochem. J. 206, 177–179.

    PubMed  CAS  Google Scholar 

  32. Cossins, A.R., Behan, M., Jones, G., and Bowler, K. (1987) Lipid-Protein Interactions in the Adaptive Regulation of Membrane Function, Biochem. Soc. Trans. 15, 77–81.

    PubMed  CAS  Google Scholar 

  33. Prendergast, F.G., Haugland, R.P., and Callahan, P.J. (1981) 1-[4-(Trimethyamino)phenyl]-6-phenylhexa-1,3,5-triene: Synthesis, Fluorescence Properties, and Use as a Fluorescence Probe of Lipid Bilayers, Biochemistry 20, 7333–7338.

    Article  PubMed  CAS  Google Scholar 

  34. Houslay, M.D., and Gordon, L.M. (1983) The Activity of Adenylate Cyclase Is Regulated by the Nature of Its Lipid Environment, Curr. Top. Membr. Transp. 18, 179–231.

    CAS  Google Scholar 

  35. Gordon, L.M., Sauerheber, R.D., Esgate, J.A., Dipple, I., Marchmont, R.J., and Houslay, M.D. (1980) The Increase in Bilayer Fluidity of Rat Liver Plasma Membranes Achieved by the Local Anesthetic Benzyl Alcohol Affects the Activity of Intrinsic Membrane Enzymes, J. Biol. Chem. 255, 4519–4527.

    PubMed  CAS  Google Scholar 

  36. Kawato, S., Kinosita, K., and Ikegami, I. (1977) Dynamic Structure of Lipid Bilayers Studied by Nanosecond Fluorescence Techniques, Biochemistry 16, 2319–2324.

    Article  PubMed  CAS  Google Scholar 

  37. Zammit, V.A. (1984) Time-Dependence of Inhibition of Carnitine Palmitoyltransferase I by Malonyl-CoA in Mitochondria Isolated from Livers of Fed or Starved Rats, Biochem. J. 218, 379–386.

    PubMed  CAS  Google Scholar 

  38. Cook, G.A. (1984) Involvement of Hysteretic Effects in the Inhibition of Carnitine Palmitoyltransferase by Malonyl-CoA, Biochem. J. 224, 1015–1018.

    PubMed  CAS  Google Scholar 

  39. Kashfi, K., and Cook, G.A. (1991) Malonyl-CoA Inhibits Proteolysis of Carnitine Palmitoyltransferase I, Biochem. Biophys. Res. Commun. 178, 600–605.

    Article  PubMed  CAS  Google Scholar 

  40. McGarry, J.D., Brown, N.F., Inthanousay, P.P., Park, D.I., Cook, B.A., and Foster, D.W. (1992) Insights into the Topography of Mitochondrial Carnitine Palmitoyltransferase Gained from the Use of Proteases, in New Developments in Fatty Acid Oxidation (Coates, P.M., and Tanaka, K., eds.) pp. 47–61, Wiley-Liss, New York.

    Google Scholar 

  41. Hauser, H., and Philips, M.C. (1979) Interaction of the Polar Groups of Phospholipid Bilayer Membranes, Prog. Surf. Membr. Sci. 13, 297–413.

    CAS  Google Scholar 

  42. Vidal, J.C., McIntyre, J.D., Churchill, P., Andrew, J.A., Peheret, M., and Fleischer, S. (1983) Influence of Diabetes on Rat Liver Mitochondria—Decreased Unsaturation of Phospholipid and d-β-Hydroxybutyrate Dehydrogenase Activity, Arch. Biochem. Biophys. 224, 643–658.

    Article  PubMed  CAS  Google Scholar 

  43. Brenner, R.R. (1990) Endocrine Control of Fatty Acid Desaturation, Biochem. Soc. Trans. 18, 773–775.

    PubMed  CAS  Google Scholar 

  44. Gellhorn, A., and Benjamin, W. (1964) The Intracellular Localization of an Enzymatic Defect of Lipid Metabolism in Diabetic Rats, Biochim. Biophys. Acta 84, 167–175.

    PubMed  CAS  Google Scholar 

  45. Holman, R.T., Johnson, S.B., Gerrard, J.M., Mauer, S.M., Kupcho-Sandberg, S., and Brown, O.M. (1983) Arachidonic Acid Deficiency in Streptozotocin-Induced Diabetes, Proc. Natl. Acad. Sci. USA 80, 2375–2379.

    Article  PubMed  CAS  Google Scholar 

  46. Holub, B.J. (1986) Metabolism and Function of Myoinositol and Inositol Phospholipids, Annu. Rev. Nutr. 6, 563–597.

    Article  PubMed  CAS  Google Scholar 

  47. Zhu, X., and Eichberg, J. (1990) A Myo-inositol Pool Utilized for Phosphatidylinositol Synthesis Is Depleted in Sciatic Nerve from Rats with Streptozotocin-Induced Diabetes, Proc. Natl. Acad. Sci. USA 87, 9818–9822.

    Article  PubMed  CAS  Google Scholar 

  48. Saad, M., Maeda, L., Brenelli, S., Carvalho, C., Paiva, R., and Velloso, L. (1997) Defects in Insulin Signal Transduction in Liver and Muscle of Pregnant Rats, Diabetologia 40, 179–186.

    Article  PubMed  CAS  Google Scholar 

  49. Leturque, A., Burnol, A., Ferre, P., and Girard, J. (1984) Pregnancy-Induced Insulin Resistance in the Rat: Assessment by Glucose Clamp Technique, Am. J. Physiol. 246, E25-E31.

    PubMed  CAS  Google Scholar 

  50. Leturque, A., Hauguel, S., Dub, M.S., and Girard, J. (1989) Effects of Placental Lactogen and Progesterone on Insulin Stimulated Glucose Metabolism in Rat Muscles in vitro, Diabetes Metab. 15, 176–181.

    CAS  Google Scholar 

  51. Ryan, E., and Enns, L. (1988) Role of Gestational Hormones in the Induction of Insulin Resistance, J. Clin. Endocrinol. Metab. 67, 341–347.

    Article  PubMed  CAS  Google Scholar 

  52. Ghadimenejad, I., and Saggerson, E.D. (1992) Physiological State and the Sensitivity of Liver Mitochondrial Outer Membrane Carnitine Palmitoyltransferase to Malonyl-CoA. Correlations with Assay Temperature, Salt Concentration and Membrane Lipid Composition, Int. J. Biochem. 24, 1117–1124.

    Article  Google Scholar 

  53. Daum, G. (1985) Lipids of Mitochondria, Biochim. Biophys. Acta 822, 1–42.

    PubMed  CAS  Google Scholar 

  54. Litman, B.J., and Barenholz, Y. (1982) Fluorescence Probe—Diphenylhexatriene, Methods Enzymol. 81, 678–685.

    Article  PubMed  CAS  Google Scholar 

  55. Fraser, F., and Zammit, V.A. (1998) Enrichment of Carnitine Palmitoyltransferases I and II in the Contact Sites of Rat Liver Mitochondria, Biochem. J. 329, 225–229.

    PubMed  CAS  Google Scholar 

  56. Lemmon M.A., MacKenzie, K.R., Arkin, I.T., and Engelman, D.M. (1997) Transmembrane α-Helix Interactions in Folding and Oligomerization of Integral Membrane Proteins, in Membrane Pro

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor A. Zammit.

About this article

Cite this article

Zammit, V.A., Corstorphine, C.G., Kolodziej, M.P. et al. Lipid molecular order in liver mitochondrial outer membranes, and sensitivity of carnitine palmitoyltransferase I to malonyl-CoA. Lipids 33, 371–376 (1998). https://doi.org/10.1007/s11745-998-0217-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-998-0217-7

Keywords

Navigation