Skip to main content
Log in

Cytotoxicity of tocopherols and their quinones in drug-sensitive and multidrug-resistant leukemia cells

  • Published:
Lipids

Abstract

Cytotoxicities of tocopherols (α-T, γ-T, δ-T), their para (α-TQ, γ-TQ, δ-TQ)-and ortho (Tocored)-quinone oxidation products, the synthetic quinone analog of γ-TQ containing a methyl group substituted for the phytyl side-chain (TMCQ) and the synthetic quinone analog of Tocored containing a methyl group substituted for the phytyl side-chain (PR) were measured in acute lymphoblastic leukemia cell lines that are drug-sensitive (CEM) and multidrug-resistant (CEM/VLB100). Among tocopherols, only δ-T exhibited cytotoxicity. Among para quinones, α-TQ showed no cytotoxicity, while γ-TQ and δ-TQ were highly cytotoxic in both CEM and CEM/VLB100 cell lines (LD50<10 μM). δ-TQ and γ-TQ were more cytotoxic than the widely studied chemotherapeutic agent doxorubicin, which also showed selective cytotoxicity to CEM cells. The orthoquinone Tocored was less cytotoxic than doxorubicin in drug-sensitive cells but more cytotoxic than doxorubicin in multidrug-resistant cells. Cytotoxicity was not a function of the phytyl side-chain since both TMCQ and PR were cytotoxic in leukemia cells. Cytotoxic para and ortho quinones were electrophiles that formed adducts with nucleophilic thiol groups in glutathione and 2-mercaptoethanol. Cytotoxicity was enhanced when the glutathione pool was depleted by preincubation with buthionine-[S,R]-sulfoximine, but cytotoxicity was diminished by the addition of N-acetylcysteine to cultures. α-T also diminished the cytotoxicity of para- and or-thoquinones. Buthionine-[S,R]-sulfoximine did not block the inhibitory effect of either N-acetylcysteine or α-T, showing that these agents did not act solely by maintaining the glutathione pool as an essential antioxidant system. In conclusion, tocopherylquinones represent a new class of alkylating electrophilic quinones that function as highly cytotoxic agents and escape multidrug resistance in acute lymphoblastic leukemia cell lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ANOVA:

analysis of variance

BSO:

buthionine-[S,R]-sulfoximine

CEM:

drug-sensitive lymphoblastic leukemia cells

CEM/VLB100 :

multidrug-resistant lymphoblastic leukemia cells

FAB MS:

fast atom bombardment mass spectrometry

HPLC:

high-performance liquid chromatography

MTT:

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

NAC:

N-acetylcysteine

PR:

2,2,7,8-tetramethylchroman-5,6-dione

α-T, δ-T:

and γ-T, α-, δ- and γ-tocopherol

TLC:

thin-layer chromatography

TMCQ:

2-(3-hydroxy-3-methylbutyl)-5,6-dimethyl-1,4-benzoquinone

Tocored:

2,7,8-trimethyl-2-(4,8,12-trimethyldecyl)0chroman-5,6-dione

TQ:

tocopheryl quinone

α-TQ:

γ-TQ, and δ-TQ, α-, γ-, and δ-tocopheryl quinone

References

  1. Nesaretnam, K., Guthrie, N., Chambers, A.F., and Carroll, K.K. (1995) Effect of Tocotrienols on the Growth of a Human Breast Cancer Cell Line in Culture, Lipids 30, 1139–1143.

    PubMed  CAS  Google Scholar 

  2. Nesaretnam, K., Stephens, R., Dils, R., and Darbre, P. (1997) The Anti-Proliferative Properties of Tocotrienols Derived from Palm Oil, Sixteenth International Congress on Nutrition, Abstract PW 10.15, p. 67.

  3. Lindsey, J.A., Zhang, H., Kaseki, H., Morisaki, N., Sato, T., and Cornwell, D.G. (1985) Fatty Acid Metabolism and Cell Proliferation. VII. Antioxidant Effects of Tocopherols and Their Quinones, Lipids 20, 151–157.

    PubMed  CAS  Google Scholar 

  4. Thornton, D.E., Jones, K.H., Jiang, Z., Zhang, H., Liu, G., and Cornwell, D.G. (1995) Antioxidant and Cytotoxic Tocopheryl Quinones in Normal and Cancer Cells, Free Radical Biol. Med. 18, 963–976.

    Article  CAS  Google Scholar 

  5. Mezick, J.A., Settlemire, C.T., Brierley, G.P., Barefield, K.P., Jensen, W.N., and Cornwell, D.G. (1970) Erythrocyte Membrane Interactions with Menadione and the Mechanism of Menadione-Induced Hemolysis, Biochim. Biophys. Acta 219, 361–371.

    Article  PubMed  CAS  Google Scholar 

  6. Rossi, L., Moore, G.A., Orrenius, S., and O'Brien, P.J. (1986) Quinone Toxicity in Hepatocytes Without Oxidative Stress, Arch. Biochem. Biophys. 251, 25–35.

    Article  PubMed  CAS  Google Scholar 

  7. O'Brien, P.J. (1991) Molecular Mechanisms of Quinone Cytotoxicity, Chem. Biol. Interact. 80, 1–41.

    Article  PubMed  Google Scholar 

  8. Monks, T.J., Hanzlik, R.P., Cohen, G.M., Ross, D., and Graham, D.G. (1992) Quinone Chemistry and Toxicity, Toxicol. Appl. Pharmacol. 112, 2–16.

    Article  PubMed  CAS  Google Scholar 

  9. Guyton, K.Z., Thompson, J.A., and Kensler, T.W. (1993) Role of Quinone Methide in the In Vitro Toxicity of the Skin Tumor Promoter Butylated Hydroxytoluene Hydroperoxide, Chem. Res. Toxicol. 6, 731–738.

    Article  PubMed  CAS  Google Scholar 

  10. Sharma, M., and Tomasz, M. (1994) Conjugation of Glutathione and Other Thiols with Bioreductively Activated Mitomycin C. Effect of Thiols on the Reductive Activation Rate, Chem. Res. Toxicol. 7, 390–400.

    Article  PubMed  CAS  Google Scholar 

  11. Meister, A. (1988) Glutathione Metabolism and Its Selective Modification, J. Biol. Chem. 263, 17205–17208.

    PubMed  CAS  Google Scholar 

  12. John, W., Dietzel, E., and Emte, W. (1939) Über Einige Oxydationsprodukte der Tokopherole und Analoger Einfacher Modelkörper. 6. Mitteilung über Antisterilitäts Factoren (vitamin E), Z. Physiol. Chem. 257, 173–189.

    CAS  Google Scholar 

  13. Suarna, C., Baca, M., Craig, D.C., Scudder, M., and Southwell-Keely, P.T. (1991) Further Oxidation Products of 2,2,5,7,8-Pentamethyl-6-chromanol, Lipids 26, 847–852.

    CAS  Google Scholar 

  14. Kohar, I., Baca, M., Suarna, C., Stocker, R., and Southwell-Keely, P.T. (1995) Is α-Tocopherol a Reservoir for α-Tocopheryl Hydroquinone? Free Radical Biol. Med. 19, 197–207.

    Article  CAS  Google Scholar 

  15. Lau, S.S., Hill, B.A., and Highet, R.J. (1988) Sequential Oxidation and Glutathione Addition to 1,4-Benzoquinone. Correlation of Toxicity with Increased Glutathione Substitution, Molec. Pharmacol. 34, 829–836.

    CAS  Google Scholar 

  16. Smithgall, T.E., Harvey, R.G., and Penning, T.M. (1988) Spectroscopic Identification of Ortho-quinones as the Products of Polycyclic Aromatic trans-Dihydrodiol Oxidation Catalyzed by Dihydrodiol Dehydrogenase, J. Biol. Chem. 263, 1814–1820.

    PubMed  CAS  Google Scholar 

  17. Carmichael, J., DeGraff, W.G., Gazder, A.F., Minna, J.D., and Mitchell, J.B. (1987) Evaluation of a Tetrazolium-based Semiautomated Colorimetric Assay: Assessment of Chemosensitivity Testing, Cancer Res. 47, 936–942.

    PubMed  CAS  Google Scholar 

  18. Berridge, M.V., Tan, A.S., McCoy, K.D., and Wang, R. (1996) The Biochemical and Cellular Basis of Cell Proliferation Assays That Use Tetrazolium Salts, Biochemica 4, 14–19.

    Google Scholar 

  19. Butler, J., and Hoey, B.M. (1992) Reactions of Glutathione and Glutathione Radicals with Benzoquinones, Free Radical Biol. Med. 12, 337–345.

    Article  CAS  Google Scholar 

  20. Pacht, E.R., Kaseki, H., Mohammed, J.R., Cornwell, D.G., and Davis, W.B. (1986) Deficiency of Vitamin E in the Alveolar Fluid of Cigarette Smokers. Influence on Alveolar Macrophage Cytotoxicity, J. Clin. Invest. 77, 789–796.

    Article  PubMed  CAS  Google Scholar 

  21. Csallany, A.S., Draper, H.H., and Shah, S.N. (1962) Conversion of d-α-Tocopherol-C14 to Tocopheryl-p-quinone in vivo. Arch. Biochem. Biophys. 98, 142–145.

    Article  PubMed  CAS  Google Scholar 

  22. Mellors, A., and Barnes, M.Mc. (1966) The Distribution and Metabolism of α-Tocopherol in the Rat, Br. J. Nutr. 20, 69–77.

    Article  PubMed  CAS  Google Scholar 

  23. Peake, I.R., and Bieri, J.G. (1971) Alpha- and Gamma-tocopherol in the Rat: in vitro and in vivo Tissue Uptake and Metabolism, J. Nutr. 101, 1615–1622.

    PubMed  CAS  Google Scholar 

  24. Gallo Torres, H.E., Miller, O.N., Hamilton, J.G., and Tratnyek, C. (1971) Distribution and Metabolism of Two Orally Administered Esters of Tocopherol, Lipids 6, 318–325.

    CAS  Google Scholar 

  25. Ham, A-J.L., and Liebler, D.C. (1995) Vitamin E Oxidation in Rat Liver Mitochondria, Biochemistry 34, 5754–5761.

    Article  PubMed  CAS  Google Scholar 

  26. Cooney, R.V., Harwood, P.J., Franke, A.A., Narala, K., Sundström, A.-K., Berggren, P.-O., and Mordan, L.J. (1995) Products of γ-Tocopherol Reaction with NO2 and Their Formation in Rat Insulinoma (RINm5F) Cells, Free Radical Biol. Med. 19, 259–269.

    Article  CAS  Google Scholar 

  27. Christen, S., Woodall, A.A., Shigenaga, M.K., Southwell-Keely, P.T., Duncan, M.W., and Ames, B.N. (1997) γ-Tocopherol Traps Mutagenic Electrophiles Such as NO and Complements α-Tocopherol: Physiological Implications, Proc. Natl. Acad. Sci. USA 94, 3217–3222.

    Article  PubMed  CAS  Google Scholar 

  28. Siegel, D., Bolton, E.M., Burr, J.A., Liebler, D.C., and Ross, D. (1997) The Reduction of α-Tocopherolquinone by Human NAD(P)H: Quinone Oxidoreductase: The Role of α-Tocopherolhydroquinone as a Cellular Antioxidant, Molec. Pharmacol. 52, 300–305.

    CAS  Google Scholar 

  29. DeLong, M.J., Prochaska, H.J., and Talalay, P. (1986) Induction of NAD(P)H: Quinone Reductase in Murine Hepatoma Cells by Phenolic Antioxidants, Dyes, and Other Azo Chemoprotectors: A Model System for the Study of Anticarcinogens, Proc. Natl. Acad. Sci. USA 83, 787–791.

    Article  CAS  Google Scholar 

  30. Kayden, H.J., and Traber, M.G. (1993) Absorption, Lipoprotein Transport and Regulation of Plasma Concentrations of Vitamin E in Humans, J. Lipid Res. 34, 343–358.

    PubMed  CAS  Google Scholar 

  31. Behrens, W.A., and Madere, R. (1986) α- and γ-Tocopherol Concentrations in Human Serum, J. Am. Coll. Nutr. 5, 91–96.

    PubMed  CAS  Google Scholar 

  32. Podda, M., Weber, C., Traber, M., and Packer, L. (1996) Simultaneous Determination of Tissue Tocopherols, Tocotrienols, Ubiquinols, and Ubiquinones, J. Lipid Res. 37, 893–901.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David G. Cornwell.

About this article

Cite this article

Cornwell, D.G., Jones, K.H., Jiang, Z. et al. Cytotoxicity of tocopherols and their quinones in drug-sensitive and multidrug-resistant leukemia cells. Lipids 33, 295–301 (1998). https://doi.org/10.1007/s11745-998-0208-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-998-0208-8

Keywords

Navigation