Skip to main content
Log in

Low-fat, monounsaturate-rich diets reduce susceptibility of low density lipoproteins to peroxidation ex vivo

  • Published:
Lipids

Abstract

Oxidative modification of low density lipoprotein (LDL) plays an important role in the process of atherosclerosis. The susceptibility of LDL to oxidation and the amount of peroxidation products formed are influenced by the lipoprotein content of 18∶1 n−9, 18∶2n−6, and the 18∶2n−6/18∶1n−9 ratio, which is dependent in part on dietary fatty acids. The purpose of this study was to determine if changing from a typical American diet to a low-fat, monousaturate-rich diet (LFMR) would result in favorable alterations in the fatty acid composition and oxidative profile of LDL in hypercholesterolemic individuals. Free-living postmennopausal hypercholesterolemic women who routinely consumed a diet moderately high in total fat and total saturates (34 and 11%, respectively) followed an LFMR diet (26% fat, 6% saturated fat, and 14% monounsaturated fat) for 6 mon. Sixteen postmenopausal hypercholesterolemic women already following standard low-fat (LF) diets acted as a control for seasonal variations in serum lipids. LDL from randomly selected subjects (LF n=6, LFMR n=5) was evaluated. LFMR diets resulted in LDL with increased concentrations and percentages of 18∶1n−9, reduced 18∶2n−6/18∶1n−9 ratio, and lower percentages of 18∶2n−6. No significant changes in LDL fatty acids occurred in the LF group. Conjugated diene lag time increased in both groups during copper-induced in vitro oxidation. Only the LFMR group experienced an increase in lipid peroxide lag time and a decrease in lipid peroxide formation. The LFMR diet was well tolerated and may be of therapeutic value in the treatment of hypercholesterolemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BHT:

butylated hydroxytoluene

BSA:

bovine serum albumin

CD:

conjugated diene

LDL:

low density lipoprotein

LF:

low fat diet

LFMR:

low-fat monounsaturate-rich

LP:

lipid peroxide

MDA:

malondialdehyde

MUFA:

monounsaturated fatty acid

NCEP:

National Cholesterol Education Program

PBS:

phosphate buffered solution

PUFA:

polyunsaturated fatty acid

SFA:

saturated fatty acid

WHHL:

Watanabe heritable hyperlipidemic

References

  1. Carew, T.E. (1989) Role of Biologically Modified Low-Density Lipoprotein in Atherosclerosis, Am. J. Cardiol. 64, 18G-22G.

    Article  PubMed  CAS  Google Scholar 

  2. Cominacini, L., Garbin, U., Pastorino, A.M., Davoli, A., Campagnola, M., De Santis, A., Pasini, C., Faccini, G.B., Trevisan, M.T., Bertozzo, L., Pasini, F., and Cascio, V.L. (1993) Predisposition to LDL Oxidation in Patients With and Without Angiographically Established Coronary Artery Disease, Atherosclerosis 99, 63–70.

    Article  PubMed  CAS  Google Scholar 

  3. Liu, K., Cuddy, T.E., and Pierce, G.N. (1992) Oxidative Status of Lipoproteins in Coronary Disease Patients, Am. Heart. J. 123, 285–290.

    Article  PubMed  CAS  Google Scholar 

  4. Palinski, W., Rosenfeld, M.E., Yla-Herttuala, S., Gurtner, G.C., Socher, S.S., Butler, S.W., Parthasarathy, S., Carew, T.E., Steinberg, D., and Witztum, J.L. (1988) Low Density Lipoprotein Undergoes Oxidative Modification In Vivo, Proc. Natl. Acad. Sci. USA 86, 1372–1376.

    Article  Google Scholar 

  5. Witztum, J.L., and Steinberg, D. (1991) Role of Oxidized Low Density Lipoprotein in Atherogenesis, J. Clin Invest. 88, 1785–1792.

    Article  PubMed  CAS  Google Scholar 

  6. Yla-Herttuala, S., Palinski, W., Rosenfeld, M.E., Parthasarathy, S., Carew, T.E., Bulter, S., Witztum, J.L., and Steinberg, D. (1989) Evidence for the Presence of Oxidatively Modified Low Density Lipoprotein in Atherosclerotic Lesions of Rabbit and Man. J. Clin. Invest. 84, 1086–1095.

    PubMed  CAS  Google Scholar 

  7. Abbey, M., Belling, G.B., Noakes, M., Hirata, F., and Nestel, P.J. (1993) Oxidation of Low-Density Lipoproteins: Intraindividual Variability and the Effect of Dietary Linoleate Supplementation, Am. J. Clin. Nutr. 57, 391–398.

    PubMed  CAS  Google Scholar 

  8. Berry, E.M., Eisenberg, S., Haratz, D., Friedlander, Y., Norman, Y., Kaufmann, N.A., and Stein, Y. (1991) Effects of Diets Rich in Monounsaturate Fatty Acids on Plasma Lipoproteins—the Jerusalem Nutrition Study: High MUFAs vs. High PUFAs, Am. J. Clin. Nutr. 53, 899–907.

    PubMed  CAS  Google Scholar 

  9. Bonanome, A., Pagnan, A., Biffanti, S., Opportuno, A., Sorgato, F., Dorella, M., Mairorino, M., and Ursini, F. (1992) Effect of Dietary Monounsaturated and Polyunsaturated Fatty Acids on the Susceptibility of Plasma Low Density Lipoproteins to Oxidative Modification, Arterioscler. Thromb. 12, 529–533.

    PubMed  CAS  Google Scholar 

  10. Parthasarathy, S., Khoo, J.C., Miller, E., Barnett, J., and Witztum, J.L. (1990) Low Density Lipoprotein Rich in Oleic Acid Is Protected Against Oxidative Modification: Implications for Dietary Prevention of Atherosclerosis. Proc. Natl. Acad. Sci. USA 87, 3894–3898.

    Article  PubMed  CAS  Google Scholar 

  11. Reaven, P., Parthasarathy, S., Grasse, B.J., Miller, E., Almazan, F., Mattson, F.H., Khoo, J.C., Steinberg, D., and Witztum, J.L. (1991) Feasibility of Using an Oleate-Rich Diet to Reduce the Susceptibility of Low-Density Lipoprotein to Oxidative Modification in Humans, Am. J. Clin. Nutr. 54, 701–706.

    PubMed  CAS  Google Scholar 

  12. Reaven, P., Parthasarathy, S., Grasse, B.J., Miller, E., Steinberg, D., and Witztum, J.L. (1993) Effects of Oleate-Rich and Linoleate-Rich Diets on the Susceptibility of Low Density Lipoprotein to Oxidative Modification in Mildly Hypercholesterolemic Subjects, J. Clin. Invest. 91, 668–676.

    PubMed  CAS  Google Scholar 

  13. Corboy, J., Sutherland, W.H.F., and Ball, M.J. (1993) Fatty Acid Composition and the Oxidation of Low-Density Lipoproteins, Biochem. Med. Metabol. Biol. 49, 25–35.

    Article  CAS  Google Scholar 

  14. Croft, K.D., Williams, P., Dimmitt, S., Abu-Amsha, R., and Beilin, L.J. (1995) Oxidation of Low-Density Lipoproteins: Effect of Antioxidant Content, Fatty Acid Composition and Intrinsic Phospholipase Activity on Susceptibility to Metal Ion-Induced Oxidation, Biochim. Biophys. Acta 1254, 250–256.

    PubMed  Google Scholar 

  15. Kleinveld, H.A., Naber, A.H.J., Stalenhoef, A.F.H., and Demacker, P.N.M. (1993) Oxidation Resistance, Oxidation Rate, and Extent of Oxidation of Human Low-Density Lipoprotein Depent on the Ratio of Oleic Acid Content to Linoleic Acid Content: Studies in Vitamin E Deficient Subjects, Free Radical Biol. Med. 15, 273–280.

    Article  CAS  Google Scholar 

  16. Hogarty, C.J., Ang, C., and Eitenmiller, R.R. (1989) Tocopherol Content of Selected Foods by HPLC/Fluorescence Quantitation, J. Food Comp. Anal. 2, 200–209.

    Article  CAS  Google Scholar 

  17. Marlett, J.A. (1992) Content and Composition of Dietary Fiber in 117 Frequently Consumed Foods, J. Am. Diet. Assoc. 92, 175–186.

    PubMed  CAS  Google Scholar 

  18. Vollendorf, N.W., and Marlett, J.A. (1993) Comparison of Two Methods of Fiber Analysis of 58 Foods, J. Food. Comp. Anal. 6, 203–214.

    Article  CAS  Google Scholar 

  19. United States Department of Agriculture (1984) Composition of Foods—Fats and Oils: Raw, Processed, Prepared, Agriculture Handbook No. 8-4, Human Nutrition Information Service, U.S. Department of Agriculture, Vashington, D.C.

    Google Scholar 

  20. United States Department of Agriculture (1984) Composition of Foods—Nuts and Seed Products: Raw, Processed, Prepared, Agriculture Handbook No. 8-12, Human Nutrition Information Service, U.S. Department of Agriculture, Washington, D.C.

    Google Scholar 

  21. United States Department of Agriculture (1989) Composition of Foods: Raw, Processed, Prepared, Supplement to Agriculture Handbook No. 8-9 (1982), Human Nutrition Information Service, U.S. Department of Agriculture, Washington, D.C.

    Google Scholar 

  22. United States Department of Agriculture (1989) Composition of Foods: Raw, Processed, Prepared, Supplement to Agriculture Handbook No. 8-11 (1984). Human Nutrition Information Service, U.S. Department of Agriculture, Washington, D.C.

    Google Scholar 

  23. United States Department of Agriculture (1989) Composition of Foods: Raw, Processed, Prepared, Supplement to Agriculture Handbook No. 8-12 (1984), Human Nutrition Information Service, U.S. Department of Agriculture, Washington, D.C.

    Google Scholar 

  24. United States Department of Agriculture (1990) Composition of Foods: Raw, Processed, Prepared, Supplement to Agriculture Handbook No. 8-4 (1979), Human Nutrition Information Service, U.S. Department of Agriculture, Washington, D.C.

    Google Scholar 

  25. United States Department of Agriculture (1990) Composition of Foods: Raw, Processed, Prepared, Supplement to Agriculture Handbook No. 8-8 (1982), Human Nutrition Information Service, U.S. Department of Agriculture, Washington, D.C.

    Google Scholar 

  26. United States Department of Agriculture (1990) Composition of Foods: Raw, Processed, Prepared, Supplement to Agriculture Handbook No. 8-11 (1984), Human Nutrition Information Service, U.S. Department of Agriculture, Washington, D.C.

    Google Scholar 

  27. United States Department of Agriculture (1990) Composition of Foods—Snacks and Sweets: Raw, Processed, Prepared, Agriclture Handbook No. 8-19, Human Nutrition Information Service, U.S. Department of Agriculture, Washington, D.C.

    Google Scholar 

  28. American Heart Association (1988) Dietary Treatment of Hypercholesterolemia: A Manual for Patients, American Heart Association National Center, Sallas, TX.

    Google Scholar 

  29. Norden, A.J., Gorbet, D.W., Knauft, D.A., and Young, C.T. (1987) Variability in Oil Quality Among Peanut Genotypes in the Florida Breeding Program. Deanut Sci. 14, 7–11.

    CAS  Google Scholar 

  30. Fisher, W.R., Hammond, M.G., Mengel, M.C., and Warmke, G.L. (1975) A Genetic Determinat of the Phenotypic Variance of the Molecular Weight of Low Density Lipoprotein, Proc. Nat. Acad. Sci. USA 72, 2347–2351.

    Article  PubMed  CAS  Google Scholar 

  31. Parthasarathy, S., Steinbrecher, U.P., Barnett, J., Witzum, J.L., and Steinberg, D. (1985) Essential Role of Phospholipase A2 Activity in Endothelial Cell-Induced Modification of Low Density Lipoprotein, Proc. Natl. Acad. Sci. USA 82, 3000–3004.

    Article  PubMed  CAS  Google Scholar 

  32. Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J. (1951) Protein Measurement with the Folin Phenol Reagent, J. Biol. Chem. 193, 265–275.

    PubMed  CAS  Google Scholar 

  33. Kates, M. (1975) Techniques in Lipidology: Isolation, Analysis, and Identification of Lipids, pp. 351–353, North-Holland Publishing Company, Amsterdam.

    Google Scholar 

  34. Maxwell, R.J., and Marmer, W.N. (1983) Systematic Protocol for the Accumulation of Fatty Acid Data from Multiple Tissue Samples: Tissue Handling, Lipid Extraction and Class Separation, and Capillary Gas Chromatographic Analysis, Lipids 18, 453–459.

    PubMed  CAS  Google Scholar 

  35. Esterbaeur, H., Gebicki, J., Buhl, H., and Jurgens, G. (1992) The Role of Lipid Peroxidation and Antioxidants in Oxidative Modification of LDL, Free Rad. Biol. Med. 13, 341–390.

    Article  Google Scholar 

  36. El-Saadani, M., Esterbauer, H., El-Sayed, M., Goher, M., Nassar, A.Y., and Jurgens, G. (1989) A Spectrophotometric Assay for Lipid Peroxides in Serum Lipoproteins Using a Commercially Available Reagent, J. Lipid Res. 30, 627–630.

    PubMed  CAS  Google Scholar 

  37. Tatum, V.L., Changchit, C., and Chow, C.K. (1990) Measurement of Malondialdehyde by High Performance Liquid Chromatography with Fluorescence Detection, Lipids 25, 226–229.

    CAS  Google Scholar 

  38. Aviram, M., and Eias, K. (1993) Dietary Olive Oil Reduces Low-Density Lipoprotein Uptake by Macrophages and Decreases the Susceptibility of the Lipoprotein to Undergo Lipid Peroxidation, Ann. Nutr. Metab. 37, 75–84.

    Article  PubMed  CAS  Google Scholar 

  39. O'Byrne, D.J., Knauft, D.A., and Shireman, R.B. (1997) Low Fat-Monounsaturated Rich Diets Containing High-Oleic Peanuts Improve Serum Lipoprotein Profiles, Lipids 32, 687–695.

    PubMed  Google Scholar 

  40. Chait, A., Brazg, R.L., Tribble, D.L., and Krauss, R.M. (1993) Susceptibility of Small, Dense, Low-Density Lipoproteins to Oxidative Modification in Subjects with the Atherogenic Lipoprotein Phenotype, Pattern B, Am. J. Med. 94, 350–356.

    Article  PubMed  CAS  Google Scholar 

  41. Tribble, D.L., Holl, L.G., Wood, P.D., and Krauss, R.M. (1992) Variations in Oxidative Susceptibility Among Six Low Density Lipoprotein Subfractions of Differing Density and Particle Size, Atherosclerosis 93, 189–199.

    Article  PubMed  CAS  Google Scholar 

  42. Austin, M.A., Breslow, J.L., Hennekens, C.H., Buring, J.E., Wilett, W.C., and Krauss, R.M. (1988) Low Density Lipoprotein Subclass Patterns and Risk of Myocardial Infarction, JAMA 260, 1917–1921.

    Article  PubMed  CAS  Google Scholar 

  43. Crouse, J.R., Parks, J.S., Schey, H.M., and Kahl, F.R. (1985) Studies of Low Density Lipoprotein Molecular Weight in Human Beings with Coronary Artery Disease, J. Lipid Res. 26, 566–574.

    PubMed  CAS  Google Scholar 

  44. de Graaf, J., Hak-Lemmers, H.L.M., Hectors, M.P.C., Demacker, P.N.M., Hendriks, J.C.M., and Stalenhoef, A.F.H. (1991) Enhanced Susceptibility to In Vitro Oxidation of the Dense Low Density Lipoprotein Subfraction in Healthy Subjects, Arterioscler. Thromb. 11, 298–306.

    PubMed  Google Scholar 

  45. Reaven, P.D., Grasse, B.J., and Tribble, D.L. (1994) Effects of Linoleate-Enriched and Oleate-Enriched Diets in Combination with α-Tocopherol on the Susceptibility of LDL and LDL Subfractions to Oxidative Modifications in Humans, Arterioscler. Thromb. 14, 557–566.

    PubMed  CAS  Google Scholar 

  46. Krause, R.M., and Dreon, D.M. (1995) Low-Density-Lipoprotein Subclasses and Response to a Low-Fat Diet in Healthy Men, Am. J. Clin. Nutr. 62, 478S-487S

    Google Scholar 

  47. Vega, G.L., and Grundy, S.M. (1996) Hypercholesterolemia with Cholesterol-Enriched LDL and Normal Levels of LDL-Apolipoprotein B; Effects of the Step 1 Diet and Bile Acid Sequestrants on the Cholesterol Content of LDL. Arterioscler. Thromb. Vasc. Biol. 16, 517–522.

    PubMed  CAS  Google Scholar 

  48. Kleinveld, H.A., Hak-Lemmers, H.L.M., Hectors, M.P.C., de Fouw, N.J., Demacker, P.N.M., and Stalenhoef, A.F.H. (1995) Vitamin E and Fatty Acid Intervention Does Not Attenuate the Progression of Atherosclerosis in Watanabe Heritable Hyperlipidemic Rabbits, Arterioscler. Thromb. Vasc. Biol. 15, 290–297.

    PubMed  CAS  Google Scholar 

  49. Visioli, F., Bellomo, G., Montedoro, G., and Galli, C. (1995) Low Density Lipoprotein Oxidation Is Inhibited in vitro by Olive Oil Constituents, Atherosclerosis 117, 25–32.

    Article  PubMed  CAS  Google Scholar 

  50. Abbey, M., Nestel, P.J., and Baghurst, P.A. (1993) Antioxidant Vitamins and Low-Density-Lipoprotein Oxidation, Am. J. Clin. Nutr. 58, 525–532.

    PubMed  CAS  Google Scholar 

  51. Jialal, I., and Grundy, S.M. (1992) Effect of Dietary Supplementation with Alpha-Tocopherol on the Oxidative Modification of Low Density Lipoprotein. J. Lipid Res. 33, 899–906.

    PubMed  CAS  Google Scholar 

  52. Jialal, I., Fuller, C.J., and Huet, B.A. (1995) The Effect of α-Tocopherol Supplementation on LDL Oxidation: A Dose-Response Study, Arterioscler. Thromb. Vasc. Biol. 15, 190–198.

    PubMed  CAS  Google Scholar 

  53. Suzukawa, M., Ishikawa, T., Yoshida, H., and Nakamura, H. (1995) Effect of In-Vivo Supplementation with Low-Dose Vitamin E on Susceptibility of Low-Density Lipoprotein and High-Density Lipoprotein to Oxidative Modification, J. Am. Coll. Nutr. 14, 46–52.

    PubMed  CAS  Google Scholar 

  54. Frei, B., and Gaziano, J.M. (1993) Content of Antioxidants, Preformed Lipid Hydroperoxides, and Cholesterol as Predictors of the Susceptibility of Human LDL to Metal Ion-Dependent and Independent Oxidation, J. Lipid Res. 34, 2135–2145.

    PubMed  CAS  Google Scholar 

  55. Babiy, A.V., Gebicki, J.M., and Sullivan, D.R. (1990) Vitamin E Content and Low Density Lipoprotein Oxidizability Induced by Free Radicals, Atherosclerosis 81, 175–182.

    Article  PubMed  CAS  Google Scholar 

  56. Jialal, I., Freeman, D.A., and Grundy, S.M. (1991) Varying Susceptibility of Different Low Density Lipoproteins to Oxidative Modification, Arterioscler. Thromb. 11, 482–488.

    PubMed  CAS  Google Scholar 

  57. Sato, K., and Niki, E., and Shimasaki, H. (1990) Free Radical-Mediated Chain Oxidation of Low Density Lipoprotein and Its Synergistic Inhibition by Vitamin E and Vitamin C Arch. Biochem. Biophys. 279, 402–405.

    Article  PubMed  CAS  Google Scholar 

  58. Abbey, M., Noakes, M., and Nestle, P.J. (1995) Dietary Supplementation with Orange and Carrot Juice in Cigarette Smokers Lowers Oxidation Products in Copper-Oxidized Low-Density Lipoproteins, J. Am. Diet. Assoc. 95, 671–675.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachel B. Shireman.

About this article

Cite this article

O'Byrne, D.J., O'Keefe, S.F. & Shireman, R.B. Low-fat, monounsaturate-rich diets reduce susceptibility of low density lipoproteins to peroxidation ex vivo . Lipids 33, 149–157 (1998). https://doi.org/10.1007/s11745-998-0190-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-998-0190-1

Keywords

Navigation