Skip to main content
Log in

Identification and Characterization of a Novel Thermophilic, Organic Solvent Stable Lipase of Bacillus from a Hot Spring

  • Original Article
  • Published:
Lipids

Abstract

A novel lipase gene lip256 was cloned and identified from the genomic library of hot spring strain Bacillus sp. HT19. The deduced amino acid sequence of lip256 has less than 32% identity to a predicted esterase (Cog1752) from Photobacterium leiognathi lrivu.4.1 and contains a novel motif (GTSAG) that differs from other clusters in the lipase superfamily. Following purification, a single band was obtained with a molecular mass of 33 kDa by SDS-PAGE, and the optimal temperature and pH for lipolytic activity of Lip25 were 70 °C and 9.0, respectively. Lip256 exhibited high activity at high temperatures, with 40% maximum activity at 80 °C and good stability at temperatures ranges between 50 and 80 °C. Additionally, the enzyme was highly stable in the presence of butyl-alcohol, glycerol, acetonitrile, pyridine, and urea. However, the presence of acetone, methanol, trichloromethane, petroleum ether, hexane, tert-butanol, isopropanol, dithiothreitol, ethylenediaminetetraacetic acid, polyhexamethylene biguanide, dimethyl sulfoxide, benzene, Triton X-100, Tween-20, Tween-80, and sodium dodecyl sulfate suppressed or absolutely inhibited enzyme activity. Furthermore, Ca2+, Mg2+, and Cu2+ suppressed enzyme activity, whereas Na+, Fe3+, K+, Fe2+, and Sr2+ enhanced enzyme activity. The unique characteristics of novel lipase Lip256, including its thermo-alkaliphilic performance, high tolerance toward metal ions, inhibitors, and detergents, and high stability in organic solvents, implied that this enzyme might be an interesting candidate for industrial processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

DMSO:

Dimethylsulfoxide

DTT:

Dithiothreitol

EDTA:

Ethylene diaminetetraacetic acid

LB:

Luria–Bertani

IPTG:

Isopropyl-b-d-thiogalactopyranoside

pHMB:

Polyhexamethylene biguanidine hydrochloride

p-NPP:

p-Nitrophenylpalmitate

ORF:

Open reading frame

SDS:

Sodium dodecyl sulphate

SDS-PAGE:

Sodium dodecyl sulphate-polyacrylamide gel electrophoresis

References

  1. Singh AK, Mukhopadhyay M (2012) Overview of fungal lipase: a review. Appl Biochem Biotechnol 166:486–520

    Article  CAS  PubMed  Google Scholar 

  2. Franken B, Eggert T, Jaeger KE, Pohl M (2011) Mechanism of acetaldehyde-induced deactivation of microbial lipases. BMC Biochem 12:10–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cardenas F, de Castro MS, Sanchez-Montero JM, Sinisterra JV, Valmaseda M, Elson SW, Alvarez E (2001) Novel microbial lipases: catalytic activity in reactions in organic media. Enzyme Microb Technol 28:145–154

    Article  CAS  PubMed  Google Scholar 

  4. Haki GD, Rakshit SK (2003) Developments in industrially important thermostable enzymes: a review. Bioresour Technol 89:17–34

    Article  CAS  PubMed  Google Scholar 

  5. Das A, Shivakumar S, Bhattacharya S, Shakya S, Swathi SS (2016) Purification and characterization of a surfactant-compatible lipase from Aspergillus tamarii JGIF06 exhibiting energy-efficient removal of oil stains from polycotton fabric. 3. Biotech 6(2):131–138

    Google Scholar 

  6. Ogino H (2008) Organic solvent-stable enzymes. Nova, Huntington

    Google Scholar 

  7. Xu J, Jiang M, Sun H, He B (2010) An organic solvent-stable protease from organic solvent-tolerant Bacillus cereus WQ9-2: purification, biochemical properties, and potential application in peptide synthesis. Bioresour Technol 101(20):7991–7994

    Article  CAS  PubMed  Google Scholar 

  8. Chalopagorn P, Charoenpanich J, Choowongkomon K (2014) Genome shuffling enhances lipase production of thermophilic Geobacillus sp. Appl Biochem Biotechnol 174:1444–1454

    Article  CAS  PubMed  Google Scholar 

  9. Antranikian G (2008) Industrial relevance of thermophiles and their enzymes. In: Robb F et al (eds) Thermophiles—biology and technology at high temperatures. CRC Press, Boca Raton, pp 113–160

    Google Scholar 

  10. Mei Y, Peng N, Zhao S, Yongmei H, Wang H, Liang Y, She Q (2012) Exceptional thermal stability and organic solvent tolerance of an esterase expressed from a thermophilic host. Appl Microbiol Biotechnol 93:1965–1974

    Article  CAS  PubMed  Google Scholar 

  11. Wang GL (2014) Screening, identification and characterization of novel proteases and esterases from the sediments of the arctic and the atlantic based on functional metagenomic analysis. Shandong University, Jinan

    Google Scholar 

  12. Zhou HF, Shao M, Ge ZL (2005) Study on the alkaline lysis method of exacting plasmid DNA. Acta Acad Med Zunyi 28(3):225–227

    CAS  Google Scholar 

  13. Jette JF, Ziomek E (1994) Determination of lipase activity by a rhodamine-triglyceride-agarose assay. Anal Biochem 219(2):256–260

    Article  CAS  PubMed  Google Scholar 

  14. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  15. Oh BC, Kim HK, Lee JK, Kang SC, Oh TK (1999) Staphylococcus haemolyticus lipase: biochemical properties, substrate specificity and gene cloning. FEMS Microbiol Lett 179:385–392

    Article  CAS  PubMed  Google Scholar 

  16. Pencreach G, Baratti JC (1996) Hydrolysis of p-nitrophenyl palmitate in n-heptane by the Pseudomonas cepacia lipase: a simple test for the determination of lipase activity in organic media. Enzyme Microb Technol 18:417–422

    Article  CAS  Google Scholar 

  17. Yan J, Yang J, Xu L, Yan Y (2007) Gene cloning, overexpression and characterization of a novel organic solvent tolerant and thermostable lipase from Galactomyces geotrichum Y05. J Mol Catal B 49:28–35

    Article  CAS  Google Scholar 

  18. Morrison JF (2002) Lineweaver-Burk plot. Encyclopedia of molecular biology. Wiley, Berlin

    Google Scholar 

  19. Chien A, Edgar DB, Trela JM (1976) Deoxyribonucleic acid polymerase from the extreme thermophile Thermus aquaticus. J Bacteriol 127:1550–1557

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Schmidt-Dannert C, Rua ML, Schmid RD (1997) Two novel lipases from thermophile Bacillus thermocatenulatus: screening, purification, cloning, overexpression, and properties. Methods Enzymol 284:194–220

    Article  CAS  PubMed  Google Scholar 

  21. Schmidt-Dannert C, Sztajer H, Stocklein W, Menge U, Schmid RD (1994) Screening, purification and properties of a thermophilic lipase from Bacillus thermocatenulatus. Biochim Biophys Acta 1214(1):43–53

    Article  CAS  PubMed  Google Scholar 

  22. Kambourova M, Emanuilova E, Dimitrov P (1996) Influence of culture conditions on thermostable lipase production by a thermophilic alkalitolerant strain of Bacillus sp. Folia Microbiol (Praha) 41(2):146–148

    Article  CAS  Google Scholar 

  23. Lee D, Koh Y, Kim K, Kim B, Choi H, Kim D, Suhartono MT, Pyun Y (1999) Isolation and characterization of a thermophilic lipase from Bacillus thermoleovorans ID-1. FEMS Microbiol Lett 179(2):393–400

    Article  CAS  PubMed  Google Scholar 

  24. Markossian S, Becker P, Markl H, Antranikian G (2000) Isolation and characterization of lipid-degrading Bacillus thermoleovorans IHI-91 from an icelandic hot spring. Extremophiles 4(6):365–371

    Article  CAS  PubMed  Google Scholar 

  25. Nawani N, Kaur J (2000) Purification, characterization and thermostability of lipase from a thermophilic Bacillus sp. J33. Mol Cell Biochem 206(1–2):91–96

    Article  CAS  PubMed  Google Scholar 

  26. Bornscheuer UT (2002) Microbial carboxyl esterases: classification, properties and application in biocatalysis. FEMS Microbiol Rev 26:73–81

    Article  CAS  PubMed  Google Scholar 

  27. Chahinian H, Sarda L (2009) Distinction between esterases and lipases: comparative biochemical properties of sequence-related carboxylesterases. Protein Pept Lett 16:1149–1161

    Article  CAS  PubMed  Google Scholar 

  28. Zehra BB, Kubilay M (2016) Purification and characterization of an alkali-thermostable lipase from thermophilic Anoxybacillus flavithermus HBB 134. J Microbiol Biotechnol 26(6):1087–1097

    Article  Google Scholar 

  29. Hemila H, Koivula TT, Palva I (1994) Hormone-sensitive lipase is closely related to several bacterial proteins, and distantly related to acetylcholinesterase and lipoprotein lipase: identification of a superfamily of esterases and lipases. Biochim Biophys Acta 1210:249–253

    Article  CAS  PubMed  Google Scholar 

  30. Morana A, Di Prizito N, Aurilia V, Rossi M, Cannio R (2002) A carboxylesterase from the hyperthermophilic archaeon Sulfolobus solfataricus: cloning of the gene, characterization of the protein. Gene 283:107–115

    Article  CAS  PubMed  Google Scholar 

  31. Ejima K, Liu J, Oshima Y, Hirooka K, Shimanuki S, Yokota Y, Hemmi H, Nakayama T, Nishino T (2004) Molecular cloning and characterization of a thermostable carboxylesterase from an archaeon, Sulfolobus shibatae DSM5389: non-linear kinetic behavior of a hormone-sensitive lipase family enzyme. J Biosci Bioeng 98:445–451

    Article  CAS  PubMed  Google Scholar 

  32. Levisson M, van der Oost J, Kengen SW (2009) Carboxylic ester hydrolases from hyperthermophiles. Extremophiles 13:567–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Emtenani S, Asoodeh A, Emtenania S (2013) Molecular cloning of a thermo-alkaliphilic lipase from Bacillus subtilis DR8806: expression and biochemical characterization. Process Biochem 48:1679–1685

    Article  CAS  Google Scholar 

  34. Lotrakul P, Dharmsthiti S (1997) Purification and characterization of lipase from Aeromonas sobria LP004. J Biotechnol 54:113–120

    Article  CAS  PubMed  Google Scholar 

  35. Hasan F, Shah AA, Hameed A (2006) Industrial applications of microbial lipases. Enzyme Microb Technol 39:235–251

    Article  CAS  Google Scholar 

  36. Nawani N, Khurana J, Kaur J (2006) A thermostable lipolytic enzyme from a thermophilic Bacillus sp.: purification and characterization. Mol Cell Biochem 290:17–22

    Article  CAS  PubMed  Google Scholar 

  37. Nawani N, Kaur J (2007) Studies on lipolytic isoenzymes from a thermophilic Bacillus sp.: production, purification and biochemical characterization. Enzyme Microb Technol 40:881–887

    Article  CAS  Google Scholar 

  38. Sharma S, Kanwar SS (2014) Organic solvent tolerant lipases and applications. Scientific World J 9:2748–2757

    Google Scholar 

  39. Li M, Yang LR, Xu G, Wu JP (2013) Screening, purification and characterization of a novel cold-active and organic solvent-tolerant lipase from Stenotrophomonas maltophilia CGMCC 4254. Bioresour Technol 148:114–120

    Article  CAS  PubMed  Google Scholar 

  40. Kumar Ashok, Dhar Kartik, Kanwar Shamsher Singh, Arora Pankaj Kumar (2016) Lipase catalysis in organic solvents: advantages and applications. Biol Proced Online 18:2–11

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was financially supported by Basic Scientific Research Funds of FIO, SOA (2014T09) and key lab of marine bioactive substance and modern analytical technique, SOA (MBSMAT-2015-06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiang Li.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Liu, X. Identification and Characterization of a Novel Thermophilic, Organic Solvent Stable Lipase of Bacillus from a Hot Spring. Lipids 52, 619–627 (2017). https://doi.org/10.1007/s11745-017-4265-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-017-4265-y

Keywords

Navigation