Skip to main content
Log in

EPA, DHA, and Lipoic Acid Differentially Modulate the n-3 Fatty Acid Biosynthetic Pathway in Atlantic Salmon Hepatocytes

  • Original Article
  • Published:
Lipids

Abstract

The aim of the present study was to investigate how EPA, DHA, and lipoic acid (LA) influence the different metabolic steps in the n-3 fatty acid (FA) biosynthetic pathway in hepatocytes from Atlantic salmon fed four dietary levels (0, 0.5, 1.0 and 2.0%) of EPA, DHA or a 1:1 mixture of these FA. The hepatocytes were incubated with [1-14C] 18:3n-3 in the presence or absence of LA (0.2 mM). Increased endogenous levels of EPA and/or DHA and LA exposure both led to similar responses in cells with reduced desaturation and elongation of [1-14C] 18:3n-3 to 18:4n-3, 20:4n-3, and EPA, in agreement with reduced expression of the Δ6 desaturase gene involved in the first step of conversion. DHA production, on the other hand, was maintained even in groups with high endogenous levels of DHA, possibly due to a more complex regulation of this last step in the n-3 metabolic pathway. Inhibition of the Δ6 desaturase pathway led to increased direct elongation to 20:3n-3 by both DHA and LA. Possibly the route by 20:3n-3 and then Δ8 desaturation to 20:4n-3, bypassing the first Δ6 desaturase step, can partly explain the maintained or even increased levels of DHA production. LA increased DHA production in the phospholipid fraction of hepatocytes isolated from fish fed 0 and 0.5% EPA and/or DHA, indicating that LA has the potential to further increase the production of this health-beneficial FA in fish fed diets with low levels of EPA and/or DHA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ASP:

Acid-soluble products

CE:

Cholesteryl esters

DHA:

Docosahexaenoic acid (22:6n-3)

EPA:

Eicosapentaenoic acid (20:5n-3)

FO:

Fish oil

LA:

Lipoic acid

MDG:

Monoacylglycerols and diacylglycerols

NL:

Neutral lipids

PL:

Phospholipids

PUFA:

Polyunsaturated fatty acid(s)

TAG:

Triacylglycerol(s)

LC-PUFA:

Long chain polyunsaturated fatty acid(s)

VO:

Vegetable oil

References

  1. Ytrestøyl T, Aas TS, Åsgård T (2015) Utilisation of feed resources in production of Atlantic salmon (Salmo salar) in Norway. Aquaculture 448:365–374

    Article  Google Scholar 

  2. Tocher DR (2015) Omega-3 long-chain polyunsaturated fatty acids and aquaculture in perspective. Aquaculture 449:94–107

    Article  CAS  Google Scholar 

  3. Tocher DR, Leaver MJ, Hodgson PA (1998) Recent advances in the biochemistry and molecular biology of fatty acyl desaturases. Prog Lipid Res 37:73–117

    Article  CAS  PubMed  Google Scholar 

  4. Castro LF, Tocher DR, Monroig O (2016) Long-chain polyunsaturated fatty acid biosynthesis in chordates: insights into the evolution of Fads and Elovl gene repertoire. Prog Lipid Res 62:25–40

    Article  CAS  PubMed  Google Scholar 

  5. Ruyter B, Røsjø C, Einen O, Thomassen MS (2000) Essential fatty acids in Atlantic salmon: time course of changes in fatty acid composition of liver, blood and carcass induced by a diet deficient in n-3 and n-6 fatty acids. Aquac Nutr 6:109–117

    Article  CAS  Google Scholar 

  6. Ruyter B, Thomassen MS (1999) Metabolism of n-3 and n-6 fatty acids in Atlantic salmon liver: stimulation by essential fatty acid deficiency. Lipids 34:1167–1176

    Article  CAS  PubMed  Google Scholar 

  7. Zheng X, Tocher DR, Dickson CA, Bell JG, Teale AJ (2005) Highly unsaturated fatty acid synthesis in vertebrates: new insights with the cloning and characterization of a delta6 desaturase of Atlantic salmon. Lipids 40:13–24

    Article  PubMed  Google Scholar 

  8. Hastings N, Agaba MK, Tocher DR, Zheng X, Dickson CA, Dick JR, Teale AJ (2004) Molecular cloning and functional characterization of fatty acyl desaturase and elongase cDNAs involved in the production of eicosapentaenoic and docosahexaenoic acids from alpha-linolenic acid in Atlantic salmon (Salmo salar). Mar Biotechnol (New York, NY) 6:463–474

    Article  CAS  Google Scholar 

  9. Monroig O, Zheng X, Morais S, Leaver MJ, Taggart JB, Tocher DR (2010) Multiple genes for functional 6 fatty acyl desaturases (Fad) in Atlantic salmon (Salmo salar L.): gene and cDNA characterization, functional expression, tissue distribution and nutritional regulation. Biochim Biophys Acta 1801:1072–1081

    Article  CAS  PubMed  Google Scholar 

  10. Carmona-Antonanzas G, Monroig O, Dick JR, Davie A, Tocher DR (2011) Biosynthesis of very long-chain fatty acids (C > 24) in Atlantic salmon: cloning, functional characterisation, and tissue distribution of an Elovl4 elongase. Comp Biochem Physiol B Biochem Mol Biol 159:122–129

    Article  PubMed  Google Scholar 

  11. Morais S, Monroig O, Zheng X, Leaver MJ, Tocher DR (2009) Highly unsaturated fatty acid synthesis in Atlantic salmon: characterization of ELOVL5- and ELOVL2-like elongases. Mar Biotechnol (New York, NY) 11:627–639

    Article  CAS  Google Scholar 

  12. Monroig Ó, Li Y, Tocher DR (2011) Delta-8 desaturation activity varies among fatty acyl desaturases of teleost fish: high activity in delta-6 desaturases of marine species. Comp Biochem Physiol B Biochem Mol Biol 159:206–213

    Article  PubMed  Google Scholar 

  13. Park WJ, Kothapalli KS, Lawrence P, Tyburczy C, Brenna JT (2009) An alternate pathway to long-chain polyunsaturates: the FADS2 gene product Delta8-desaturates 20:2n-6 and 20:3n-3. J Lipid Res 50:1195–1202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sprecher H (2000) Metabolism of highly unsaturated n-3 and n-6 fatty acids. Biochim Biophys Acta (BBA) Mol Cell Biol Lipids 1486:219–231

    Article  CAS  Google Scholar 

  15. Li Y, Monroig O, Zhang L, Wang S, Zheng X, Dick JR, You C, Tocher DR (2010) Vertebrate fatty acyl desaturase with Δ4 activity. Proc Natl Acad Sci 107:16840–16845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Morais S, Castanheira F, Martinez-Rubio L, Conceicao LE, Tocher DR (2012) Long chain polyunsaturated fatty acid synthesis in a marine vertebrate: ontogenetic and nutritional regulation of a fatty acyl desaturase with Delta4 activity. Biochim Biophys Acta 1821:660–671

    Article  CAS  PubMed  Google Scholar 

  17. Kuah MK, Jaya-Ram A, Shu-Chien AC (2015) The capacity for long-chain polyunsaturated fatty acid synthesis in a carnivorous vertebrate: functional characterisation and nutritional regulation of a Fads2 fatty acyl desaturase with Delta4 activity and an Elovl5 elongase in striped snakehead (Channa striata). Biochim Biophys Acta 1851:248–260

    Article  CAS  PubMed  Google Scholar 

  18. Fonseca-Madrigal J, Navarro JC, Hontoria F, Tocher DR, Martínez-Palacios CA, Monroig Ó (2014) Diversification of substrate specificities in teleostei Fads2: characterization of Δ4 and Δ6Δ5 desaturases of Chirostoma estor. J Lipid Res 55:1408–1419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Morais S, Mourente G, Martinez A, Gras N, Tocher DR (2015) Docosahexaenoic acid biosynthesis via fatty acyl elongase and Delta4-desaturase and its modulation by dietary lipid level and fatty acid composition in a marine vertebrate. Biochim Biophys Acta 1851:588–597

    Article  CAS  PubMed  Google Scholar 

  20. Park HG, Park WJ, Kothapalli KS, Brenna JT (2015) The fatty acid desaturase 2 (FADS2) gene product catalyzes Delta4 desaturation to yield n-3 docosahexaenoic acid and n-6 docosapentaenoic acid in human cells. FASEB J Off Publ Fed Am Soc Exp Biol 29:3911–3919

    CAS  Google Scholar 

  21. Tocher DR, Bell JG, Dick JR, Sargent JR (1997) Fatty acyl desaturation in isolated hepatocytes from Atlantic salmon (Salmo salar): stimulation by dietary borage oil containing gamma-linolenic acid. Lipids 32:1237–1247

    Article  CAS  PubMed  Google Scholar 

  22. Tocher DR, Bell JG, MacGlaughlin P, McGhee F, Dick JR (2001) Hepatocyte fatty acid desaturation and polyunsaturated fatty acid composition of liver in salmonids: effects of dietary vegetable oil. Comp Biochem Physiol B Biochem Mol Biol 130:257–270

    Article  CAS  PubMed  Google Scholar 

  23. Carmona-Antonanzas G, Tocher DR, Martinez-Rubio L, Leaver MJ (2014) Conservation of lipid metabolic gene transcriptional regulatory networks in fish and mammals. Gene 534:1–9

    Article  CAS  PubMed  Google Scholar 

  24. Zheng X, Torstensen BE, Tocher DR, Dick JR, Henderson RJ, Bell JG (2005) Environmental and dietary influences on highly unsaturated fatty acid biosynthesis and expression of fatty acyl desaturase and elongase genes in liver of Atlantic salmon (Salmo salar). Biochim Biophys Acta 1734:13–24

    Article  CAS  PubMed  Google Scholar 

  25. Tocher DR, Bell JG, Dick JR, Crampton VO (2003) Effects of dietary vegetable oil on Atlantic salmon hepatocyte fatty acid desaturation and liver fatty acid compositions. Lipids 38:723–732

    Article  CAS  PubMed  Google Scholar 

  26. Thomassen MS, Rein D, Berge GM, Østbye TK, Ruyter B (2012) High dietary EPA does not inhibit ∆5 and ∆6 desaturases in Atlantic salmon (Salmo salar L.) fed rapeseed oil diets. Aquaculture 360:78–85

  27. Leaver MJ, Bautista JM, Björnsson BT, Jönsson E, Krey G, Tocher DR, Torstensen BE (2008) Towards fish lipid nutrigenomics: current state and prospects for fin-fish aquaculture. Rev Fish Sci 16:73–94

    Article  CAS  Google Scholar 

  28. Betancor MB, Sprague M, Sayanova O, Usher S, Campbell PJ, Napier JA, Caballero MJ, Tocher DR (2015) Evaluation of a high-EPA oil from transgenic Camelina sativa in feeds for Atlantic salmon (Salmo salar L.): effects on tissue fatty acid composition, histology and gene expression. Aquaculture 444:1–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Brenna JT, Salem N Jr, Sinclair AJ, Cunnane SC (2009) α-Linolenic acid supplementation and conversion to n-3 long-chain polyunsaturated fatty acids in humans. Prostaglandins Leukot Essent Fatty Acids 80:85–91

    Article  CAS  PubMed  Google Scholar 

  30. Prieto-Hontoria PL, Perez-Matute P, Fernandez-Galilea M, Bustos M, Martinez JA, Moreno-Aliaga MJ (2011) Role of obesity-associated dysfunctional adipose tissue in cancer: a molecular nutrition approach. Biochim Biophys Acta 1807:664–678

    Article  CAS  PubMed  Google Scholar 

  31. Bast A, Haenen GR (2003) Lipoic acid: a multifunctional antioxidant. BioFactors (Oxford, England) 17:207–213

    Article  CAS  Google Scholar 

  32. Trattner S, Pickova J, Park KH, Rinchard J, Dabrowski K (2007) Effects of α-lipoic and ascorbic acid on the muscle and brain fatty acids and antioxidant profile of the South American pacu Piaractus mesopotamicus. Aquaculture 273:158–164

    Article  CAS  Google Scholar 

  33. Council NR (2011) Nutrient requirements of fish and shrimp. National academies press, Washington

    Google Scholar 

  34. Bou M, Berge GM, Baeverfjord G, Sigholt T, Østbye TK, Romarheim OH, Hatlen B, Leeuwis R, Venegas C, Ruyter B (Manuscript accepted) Requirements of omega-3 very long-chain polyunsaturated fatty acids in Atlantic salmon (Salmo salar L): effects of different dietary levels of EPA and DHA on fish performance and tissue composition and integrity. Br J Nutr

  35. Dannevig BH, Berg T (1985) Endocytosis of galactose-terminated glycoproteins by isolated liver cells of the rainbow trout (Salmo gairdneri). Comp Biochem Physiol B Comp Biochem 82:683–688

    Article  CAS  Google Scholar 

  36. Seglen PO (1976) Preparation of isolated rat liver cells. Methods Cell Biol 13:29–83

    Article  CAS  PubMed  Google Scholar 

  37. Kjær MA, Vegusdal A, Gjøen T, Rustan AC, Todorčević M, Ruyter B (2008) Effect of rapeseed oil and dietary n-3 fatty acids on triacylglycerol synthesis and secretion in Atlantic salmon hepatocytes. Biochim Biophys Acta 1781:112–122

    Article  PubMed  Google Scholar 

  38. Schiller Vestergren AL, Trattner S, Mraz J, Ruyter B, Pickova J (2011) Fatty acids and gene expression responses to bioactive compounds in Atlantic salmon (Salmo salar L.) hepatocytes. Neuro Endocrinol Lett 32(Suppl 2):41–50

    CAS  PubMed  Google Scholar 

  39. Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497–509

    CAS  PubMed  Google Scholar 

  40. Mason ME, Waller GR (1964) Dimethoxypropane induced transesterification of fats and oils in preparation of methyl esters for gas chromatographic analysis. Anal Chem 36:583–586

    Article  CAS  Google Scholar 

  41. Hoshi M, Williams M, Kishimoto Y (1973) Esterification of fatty acids at room temperature by chloroform-methanolic HCl-cupric acetate. J Lipid Res 14:599–601

    CAS  PubMed  Google Scholar 

  42. Narce M, Gresti J, Bezard J (1988) Method for evaluating the bioconversion of radioactive polyunsaturated fatty acids by use of reversed-phase liquid chromatography. J Chromatogr 448:249–264

    Article  CAS  PubMed  Google Scholar 

  43. Christiansen R, Borrebaek B, Bremer J (1976) The effect of (−)carnitine on the metabolism of palmitate in liver cells isolated from fasted and refed rats. FEBS Lett 62:313–317

    Article  CAS  PubMed  Google Scholar 

  44. Peterson GL (1977) A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem 83:346–356

    Article  CAS  PubMed  Google Scholar 

  45. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  46. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  47. Randall KM, Drew MD, Øverland M, Østbye TK, Bjerke M, Vogt G, Ruyter B (2013) Effects of dietary supplementation of coriander oil, in canola oil diets, on the metabolism of [1-14C] 18:3n-3 and [1-14C] 18:2n-6 in rainbow trout hepatocytes. Comp Biochem Physiol B Biochem Mol Biol 166:65–72

    Article  CAS  PubMed  Google Scholar 

  48. Stubhaug I, Tocher DR, Bell JG, Dick JR, Torstensen BE (2005) Fatty acid metabolism in Atlantic salmon (Salmo salar L.) hepatocytes and influence of dietary vegetable oil. Biochim Biophys Acta (BBA) Mol Cell Biol Lipids 1734:277–288

    Article  CAS  Google Scholar 

  49. Fonseca-Madrigal J, Bell JG, Tocher DR (2006) Nutritional and environmental regulation of the synthesis of highly unsaturated fatty acids and of fatty-acid oxidation in Atlantic salmon (Salmo salar L.) enterocytes and hepatocytes. Fish Physiol Biochem 32:317–328

    Article  CAS  Google Scholar 

  50. Ruyter B, Røsjø C, Grisdale-Helland B, Rosenlund G, Obach A, Thomassen MS (2003) Influence of temperature and high dietary linoleic acid content on esterification, elongation, and desaturation of PUFA in Atlantic salmon hepatocytes. Lipids 38:833–840

    Article  CAS  PubMed  Google Scholar 

  51. Stanković MN, Mladenović D, Ninković M, Ðuričić I, Šobajić S, Jorgačević B, de Luka S, Vukicevic RJ, Radosavljević TS (2014) The effects of α-lipoic acid on liver oxidative stress and free fatty acid composition in methionine-choline deficient diet-induced NAFLD. J Med Food 17:254–261

    Article  PubMed  PubMed Central  Google Scholar 

  52. Trattner S, Ruyter B, Østbye TK, Gjøen T, Zlabek V, Kamal-Eldin A, Pickova J (2008) Sesamin increases alpha-linolenic acid conversion to docosahexaenoic acid in Atlantic salmon (Salmo salar L.) hepatocytes: role of altered gene expression. Lipids 43:999–1008

    Article  CAS  PubMed  Google Scholar 

  53. Betancor MB, Olsen RE, Solstorm D, Skulstad OF, Tocher DR (2016) Assessment of a land-locked Atlantic salmon (Salmo salar L.) population as a potential genetic resource with a focus on long-chain polyunsaturated fatty acid biosynthesis. Biochim Biophys Acta (BBA) Mol Cell Biol Lipids 1861:227–238

    Article  CAS  Google Scholar 

  54. Espenshade PJ (2006) SREBPs: sterol-regulated transcription factors. J Cell Sci 119:973–976

    Article  CAS  PubMed  Google Scholar 

  55. Moya-Falcón C, Thomassen MS, Jakobsen JV, Ruyter B (2005) Effects of dietary supplementation of rapeseed oil on metabolism of [1-14C] 18:1n-9, [1-14C] 20:3n-6, and [1-14C] 20:4n-3 in Atlantic salmon hepatocytes. Lipids 40:709–717

    Article  PubMed  Google Scholar 

  56. Vegusdal A, Ostbye TK, Tran TN, Gjoen T, Ruyter B (2004) Beta-oxidation, esterification, and secretion of radiolabeled fatty acids in cultivated Atlantic salmon skeletal muscle cells. Lipids 39:649–658

    Article  CAS  PubMed  Google Scholar 

  57. Pashaj A, Xia M, Moreau R (2015) Alpha-lipoic acid as a triglyceride-lowering nutraceutical. Can J Physiol Pharmacol 93:1029–1041

    Article  CAS  PubMed  Google Scholar 

  58. Butler JA, Hagen TM, Moreau R (2009) Lipoic acid improves hypertriglyceridemia by stimulating triacylglycerol clearance and downregulating liver triacylglycerol secretion. Arch Biochem Biophys 485:63–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Seo EY, Ha AW, Kim WK (2012) α-Lipoic acid reduced weight gain and improved the lipid profile in rats fed with high fat diet. Nutr Res Pract 6:195–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. RL Yang, Li W, Shi YH, Le GW (2008) Lipoic acid prevents high-fat diet–induced dyslipidemia and oxidative stress: a microarray analysis. Nutrition 24:582–588

    Article  Google Scholar 

  61. Lee WJ, Song KH, Koh EH, Won JC, Kim HS, Park HS, Kim MS, Kim SW, Lee KU, Park JY (2005) Alpha-lipoic acid increases insulin sensitivity by activating AMPK in skeletal muscle. Biochem and Biophys Res Commun 332:885–891

    Article  CAS  Google Scholar 

  62. Walgren JL, Amani Z, McMillan JM, Locher M, Buse MG (2004) Effect of R(+)α-lipoic acid on pyruvate metabolism and fatty acid oxidation in rat hepatocytes. Metabolism 53:165–173

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Målfrid Tofteberg Bjerke and Inger Øien Kristiansen for their skilful technical assistance. This work was carried out with support from the Norwegian Research Council (Grant Number NFR 224913).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Bou.

Ethics declarations

Conflict of interest

There are no conflicts of interest to report.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bou, M., Østbye, TK., Berge, G.M. et al. EPA, DHA, and Lipoic Acid Differentially Modulate the n-3 Fatty Acid Biosynthetic Pathway in Atlantic Salmon Hepatocytes. Lipids 52, 265–283 (2017). https://doi.org/10.1007/s11745-017-4234-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-017-4234-5

Keywords

Navigation